Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T11:13:10.274Z Has data issue: false hasContentIssue false

Hydride Vapour Phase Homoepitaxial Growth of GaN on MOCVD-Grown ‘Templates’

Published online by Cambridge University Press:  03 September 2012

T. Paskova
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
S. Tungasmita
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
E. Valcheva
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
E.B. Svedberg
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
B. Arnaudov
Affiliation:
Faculty of Physics, Sofia University, 5, J. Bourchier blvd., Sofia 1164, Bulgaria
S. Evtimova
Affiliation:
Faculty of Physics, Sofia University, 5, J. Bourchier blvd., Sofia 1164, Bulgaria
P.Å Persson
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
A. Henry
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
R. Beccard
Affiliation:
Aixtron AG, D-52072 Aachen, Germany
M. Heuken
Affiliation:
Aixtron AG, D-52072 Aachen, Germany
B. Monemar
Affiliation:
IFM, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

We report on an improved quality of thick HVPE-GaN grown on MOCVD-GaN ‘template’ layers compared to the material grown directly on sapphire. The film-substrate interface revealed by cathodoluminescence measurements shows an absence of highly doped columnar structures which are typically present in thick HVPE-GaN films grown directly on sapphire. This improved structure results in a reduction of two orders of magnitude of the free carrier concentration from Hall measurements. It was found that the structure, morphology, electrical and optical properties of homoepitaxial thick GaN layers grown by HVPE were strongly influenced by the properties of the MOCVD-GaN ‘template’. Additionally the effect of Si doping of the GaN buffer layers on the HVPEGaN properties was analysed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Molnar, R.J., Götz, W., Romano, L.T., Johnson, N.M., J. Cryst. Growth, 178, 147 (1997).Google Scholar
2. Shibata, T., Sone, H., Yahashi, K., Yamaguchi, M., Hiramatsu, K., Sawaki, N., Itoh, N., J. Cryst. Growth, 189/190, 67 (1990).Google Scholar
3. Akasaki, I., Mat. Res. Soc. Symp. Proc., 482, 3 (1998).Google Scholar
4. Tarsa, E.J., Heying, B., Wu, X.H., Fini, P., DenBaars, S.P., Speck, J.S., J.Appl.Phys. 82, 5472 (1997).Google Scholar
5. Paskova, P., Goldys, E., Monemar, B., J. Cryst. Growth, 203, 1 (1999).Google Scholar
6. Ruvimov, S., Liliental-Weber, Z., Suski, T., AgerIII, J.W., Washburn, J., Krueger, J., Kisielowski, C., Weber, E.R., Amano, H., Akasaki, I., Appl. Phys. Lett., 69, 990 (1996).Google Scholar
7. Shmidt, N.M., Lebedev, A.V., Lundin, W.V., Pushnyi, B.V., Ratnikov, V.V., Shubina, T.V., Tsatsul'nikov, A.A., Usikov, A.S., Pozina, G., Monemar, B., Mater. Sci. & Enginer. B, (1999) (in press).Google Scholar
8. Paskova, T., Goldys, E.M., Yakimova, R., Svedberg, E.B., Henry, A., Monemar, B., J. Cryst. Growth, (1999) (in press).Google Scholar
9. Arnaudov, B., Paskova, T., Goldys, E.M., Yakimova, R., Evtimova, S., Ivanov, I.G., Henry, A., Monemar, B., J. Appl. Phys., 85, 7888 (1999).Google Scholar
10. Look, D., Molnar, R., Appl. Phys. Lett. 70, 3377 (1997).Google Scholar
11. Kornitzer, K., Ebner, T., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., Porowski, S., Phys. Rev. B 60, 1471 (1999).Google Scholar
12. Sato, H., Takahashi, H., Watanabe, A., Ota, H., Appl. Phys. Lett., 68, 3617 (1996).Google Scholar