Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T15:20:33.620Z Has data issue: false hasContentIssue false

Hydration and Proton Transfer in 3M™ PEM Ionomers: An Ab Initio Study

Published online by Cambridge University Press:  07 February 2012

Jeffrey K. Clark II
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Stephen J. Paddison*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Get access

Abstract

Electronic structure calculations were performed to study the effects local hydration, neighboring side chain connectivity, and protogenic group separation have in facilitating proton dissociation and transfer in fragments of 3M ionomers under conditions of low hydration. Two different types of ionomers, each consisting of a poly(tetrafluoroethylene) (PTFE) backbone, were considered: (1) perfluorosulfonic acid (PFSA) ionomeric fragments containing two pendant side chains (–O(CF2)4SO3H) of distinct separation along the PTFE backbone to model different equivalent weight ionomers and (2) single side chain fragments of three bis(sulfonyl imide)- based fragments with multiple and distinct acid groups per side chain having structural and chemical differences mediating protogenic group separation (side chains: –O(CF2)4SO2(NH)- SO2C6H4SO3H) with the sulfonic acid group located in either the meta or the ortho position on the phenyl ring and –O(CF2)4SO2(NH)SO2(CF2)3SO3H). Fully optimized structures of these fragments with and without the addition of water molecules at the B3LYP/6-311G** level revealed that both side chain connectivity and protogenic group separation, along with local hydration, are key contributors to proton dissociation and the energetics of proton transfer in these materials. Specifically, cooperative interaction between protogenic groups through hydrogen bonding and electron withdrawing –CF2– groups are critical for first proton dissociation and the state of the dissociated proton at low levels of hydration. However, the close proximity of protogenic groups in the ortho bis acid precluded second proton dissociation at low hydration as the relatively fixed protogenic group separation promoted interactions between water molecules, while the labile side chains in the PFSA ionomers allowed for greater freedom in the hydrogen bond network formed. Potential energy profiles for proton transfer were determined at the B3LYP/6-31G** level. The energetic penalty associated with proton transfer was found to be strongly dependent on the surrounding hydrogen bond network and the state of the dissociated proton(s), as well as, the separation between protogenic groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haile, S. M., Acta Mater. 51, 59816000 (2003).Google Scholar
2. Ise, M., Kreuer, K. D. and Maier, J., Solid State Ion. 125, 213223 (1999).Google Scholar
3. Kreuer, K. D., ChemPhysChem 3, 771775 (2002).Google Scholar
4. Kreuer, K. D., Paddison, S. J., Spohr, E. and Schuster, M., Chem. Rev. 104, 46374678 (2004).Google Scholar
5. Ezzell, B. R., Carl, W. P. and Mod, W. A., U.S. Patent No. U.S. Patent 4,358,412 (November 9 1982).Google Scholar
6. Hamrock, S. J. and Yandrasits, M. A., Polym. Rev. 46, 219244 (2006).Google Scholar
7. Sumner, J. J., Creager, S. E., Ma, J. J. and DesMarteau, D. D., J. Electrochem. Soc. 145, 107110 (1998).Google Scholar
8. Creager, S. E., Sumner, J. J., Bailey, R. D., Ma, J. J., Pennington, W. T. and DesMarteau, D. D., Electrochem. and Solid St. Let. 2, 434436 (1999).Google Scholar
9. Petersen, M. K., Wang, F., Blake, N. P., Metiu, H. and Voth, G. A., J. Phys. Chem. B 109, 37273730 (2005).Google Scholar
10. Petersen, M. K. and Voth, G. A., J. Phys. Chem. B 110, 1859418600 (2006).Google Scholar
11. Petersen, M. K., Hatt, A. J. and Voth, G. A., J. Phys. Chem. B 112, 77547761 (2008).Google Scholar
12. Eikerling, M., Paddison, S. J., Pratt, L. R. and Zawodzinski, T. A., Chem. Phys. Lett. 368, 108114 (2003).Google Scholar
13. Choe, Y. K., Tsuchida, E., Ikeshoji, T., Yamakawa, S. and Hyodo, S., Phys. Chem. Chem. Phys. 11, 38923899 (2009).Google Scholar
14. Hayes, R. L., Paddison, S. J. and Tuckerman, M. E., J. Phys. Chem. B 113, 1657416589 (2009).Google Scholar
15. Hayes, R. L., Paddison, S. J. and Tuckerman, M. E., J. Phys. Chem. A 115, 61126124 (2011).Google Scholar
16. Habenicht, B. F., Paddison, S. J. and Tuckerman, M. E., Phys. Chem. Chem. Phys. 12, 87288732 (2010).Google Scholar
17. Habenicht, B. F., Paddison, S. J. and Tuckerman, M. E., J. Mat. Chem. 20, 63426351 (2010).Google Scholar
18. Paddison, S. J., J. New Mat. Electrochem. Syst. 4, 197207 (2001).Google Scholar
19. Eikerling, M., Paddison, S. J. and Zawodzinski, T. A., J. New Mat. Electrochem. Syst. 5, 1523 (2002).Google Scholar
20. Paddison, S. J. and Elliott, J. A., J. Phys. Chem. A 109, 75837593 (2005).Google Scholar
21. Paddison, S. J. and Elliott, J. A., Solid State Ion. 177, 23852390 (2006).Google Scholar
22. Elliott, J. A. and Paddison, S. J., Phys. Chem. Chem. Phys. 9, 26022618 (2007).Google Scholar
23. Paddison, S. J. and Elliott, J. A., Solid State Ion. 178, 561567 (2007).Google Scholar
24. Sagarik, K., Phonyiem, M., Lao-Ngam, C. and Chaiwongwattana, S., Phys. Chem. Chem. Phys. 10, 20982112 (2008).Google Scholar
25. Wang, C. and Paddison, S. J., Phys. Chem. Chem. Phys. 12, 970981 (2009).Google Scholar
26. Clark, J. K. and Paddison, S. J., Solid State Ion., doi:10.1016/j.ssi.2011.1007.1011 (2011).Google Scholar
27. Wang, C., Clark, J. K., Kumar, M. and Paddison, S. J., Solid State Ion., doi: 10.1016/j.ssi.2011.1007.1002 (2011).Google Scholar
28. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., et al. ., (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
29. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. ., (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
30. Schlegel, H. B., J. Comput. Chem. 3, 214218 (1982).Google Scholar
31. Harihara, P. C. and Pople, J. A., Theor. Chim. Acta 28, 213222 (1973).Google Scholar
32. Becke, A. D., J. Chem. Phys. 98, 56485652 (1993).Google Scholar
33. Becke, A. D., J. Chem. Phys. 98, 13721377 (1993).Google Scholar
34. McLean, A. D. and Chandler, G. S., J. Chem. Phys. 72, 56395648 (1980).Google Scholar