Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T15:07:19.124Z Has data issue: false hasContentIssue false

A High-Throughput Crystallization Device to Study Biomineralization in Vitro

Published online by Cambridge University Press:  01 February 2011

Alexander Becker
Affiliation:
Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany), e-mail [email protected]
Matthias Epple
Affiliation:
Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany), e-mail [email protected]
Get access

Abstract

A new crystallization device, based on a constant-composition double-diffusion setup, was constructed to study biomineralization in vitro. The device was tested with poly(aspartic acid) as a model additive in the precipitation of calcium carbonate, showing a complete crystal growth inhibition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 HA, Lowenstam, Weiner, S. On biomineralization. Oxford University Press, New York, 1989.Google Scholar
2 Mann, S. Biomimetic materials chemistry. VCH, Weinheim.Google Scholar
3 Baeuerlein, E. Biomineralization. Wiley-VCH, Weinheim, pp 294.Google Scholar
4 Baeuerlein, E. Biomineralization. Progress in Biology, Molecular Biology and Application. Wiley-VCH, Weinheim, New York.Google Scholar
5 Tiemann, H, Sötje, I, Jarms, G, Paulmann, C, Epple, M, Hasse, B. Calcium sulfate hemihydrate in statoliths of deep-sea medusae. J Chem Soc, Dalton Trans 2002:12661268.Google Scholar
6 HC, Lichtenegger, Schöberl, T, MH, Bartl, Waite, H, GD, Stucky. High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 2002;298:389392.Google Scholar
7 Albeck, S, Addadi, L, Weiner, S. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connective Tissue Res 1996;35:365370.Google Scholar
8 Falini, G, Albeck, S, Weiner, S, Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996;271:6769.Google Scholar
9 Levi, Y, Albeck, S, Brack, A, Weiner, S, Addadi, L. Control over aragonite crystal nucleation and growth: an in vitro study of biomineralization. Chem Eur J 1998;4:389396.Google Scholar
10 Tong, H, Hu, J, Ma, W, Zhong, G, SYao, S, Cao, N. In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials 2001;23:25932598.Google Scholar
11 Kröger, N, Deutzmann, R, Sumper, M. Silica-precipitating peptides from diatoms: The chemical structure of silaffin-1A from cylindrotheca fusiformis . J Biol Chem 2001;276(28):2606626070.Google Scholar
12 Kröger, N, Lorenz, S, Brunner, E, Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002;298:584586.Google Scholar
13 Pokroy, B, Zolotoyabko, E. Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction. J Mater Chem 2003;13:682688.Google Scholar
14 Weiner, S, Addadi, L. Acidic macromolecules of mineralized tissues: the controllers of crystal formation. TIBS 1991;16:252256.Google Scholar
15 Addadi, L, Weiner, S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 1985;82:41104114.Google Scholar
16 Aizenberg, J, Ilan, M, Weiner, S, Addadi, L. Intracrystalline macromolecules are involved in the morphogenesis of calcite sponge spicules. Conn Tiss Res 1996;34(4):255261.Google Scholar
17 Aizenberg, J, Hanson, J, TF, Koetzle, Weiner, S, Addadi, L. Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J Am Chem Soc 1997;119:881886.Google Scholar
18 Becker, A, Becker, W, JC, Marxen, Epple, M. In-vitro crystallisation of calcium carbonate in the presence of biological additives - comparison of the ammonium carbonate method with double-diffusion techniques. Z Anorg Allg Chem 2003;629:23052311.Google Scholar
19 MB, Tomson, GH, Nancollas. Mineralization kinetics: A constant composition approach. Science 1978;200:10591060.Google Scholar
20 Kniep, R, Busch, S. Biomimetisches Wachstum und Selbstorganisation von Fluorapatit-Aggregaten durch Diffusion in denaturierten Kollagen-Matrices. Angew Chem 1996;108:27882791; Angew. Chem. Int. Ed. Engl. 1996, 2735, 2624-2627.Google Scholar
21 Peters, F, Epple, M. Simulating arterial wall calcification in vitro: biomimetic crystallization of calcium phosphates under controlled conditions. Z Kardiol 2001;90:Suppl.3:III/81–III/85.Google Scholar
22 Peters, F, Epple, M. Crystallization of calcium phosphates under constant conditions with a double-diffusion setup. J Chem Soc Dalton Trans 2001:35853592.Google Scholar
23 CS, Sikes, ML, Yeung, AP, Wheeler. Inhibition of calcium carbonate and phosphate crystallization by peptides enriched in aspartic acid and phosphoserine. In: CS, Sikes, AP, Wheeler (eds.) Surface reactive peptides and polymers: Discovery and commercialization, vol. 444, 1990, pp 5071.Google Scholar
24 Falini, G. Crystallization of calcium carbonates in biologically inspired collagenous matrices. Int J Inorg Mater 2000;2:455461.Google Scholar
25 Grassmann, O, Müller, G, Löbmann, P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix: relevance to biomineralization. Chem Mater 2002;14:45304535.Google Scholar