Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:59:57.306Z Has data issue: false hasContentIssue false

High Performance Side-Chain Polyquinolines and Perfluorocyclobutane-Containing Thermoset Polymers for Electro-Optic Applications

Published online by Cambridge University Press:  21 March 2011

Hong Ma
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Jianyao Wu
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Petra Herguth
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Baoquan Chen
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Ajay Purohit
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120
Get access

Abstract

A modular approach for making second-order nonlinear optical (NLO) side-chain aromatic polyquinolines has been developed. The synthesis provides a method for readily incorporating NLO chromophores into the pendent phenyl moieties of parent polyquinolines at the final stage via the Mitsunobu reaction. The method produces polyquinolines with a wide range of polymer backbones and offers great flexibility in the selection of NLO chromophores. These side-chain NLO polyquinolines demonstrate high electro-optic (E-O) activities (up to 35 pm/V at 830 nm and 22 pm/V at 1300 nm) and excellent tradeoffs among thermal, optical, and electrical properties.

Most recently, a series of novel second-order NLO thermoset polymers containing silicon-perfluorocyclobutane (PFCB) has also been synthesized. This was accomplished via the crosslinking reaction between the di(trifluorovinylether)-containing NLO chromophores and the tris(trifluorovinylether) monomer in solid state at 180-250 °C. The radical-mediated, stepwise cycloaddition reaction offers great tolerance to very sensitive functional groups such as tricyanovinyl acceptor. A variety of NLO chromophores could be easily incorporated into these thermoset polymers compared to the modular approach. Preliminary results have indicated these polymers to possess excellent processability, low optical loss, and a combination of highly desirable thermal, nonlinear optical, and mechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Marder, S. R., Kippelen, B., Jen, A. K.-Y. and Peyghambarian, N., Nature 388, 845 (1997); (b) L. R. Dalton, A. W. Harper, R. Ghosn, H. W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen and K. J. Shea, Chem. Mater. 7, 1060 (1995); (c) T. J. Marks and M. A. Ratner, Angew. Chem., Int. Ed. Engl. 34, 155 (1995); (d) D. M. Burland, R. D. Miller and C. A.Walsh, Chem. Rev. 94, 31 (1994).Google Scholar
2. Dagani, R., Chem. & Eng. News 22 (1996).Google Scholar
3. Matsumoto, S., Kubodera, K., Kurihara, T. and Kaino, T., Appl. Phys. Lett. 51, 1 (1987).Google Scholar
4. Harper, A. W., Mao, S. S. H., Ra, Y., Zhang, C., Zhu, J. and Dalton, L. R., Chem. Mater. 11, 2886 (1999).Google Scholar
5. (a) Wu, J. W., Valley, J. F., Ermer, S., Binkley, E. S., Kenney, J. T., Lipscomb, G. F. and Lytel, R., Appl. Phys. Lett. 58, 225 (1991); (b) T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller and W. Volksen, Science 268, 1604 (1995); (c) D. Yu, A. Gharavi and L. Yu, J. Am. Chem. Soc. 117, 11680 (1995); (d) T. A. Chen, A. K.-Y. Jen and Y. M. Cai, J. Am. Chem. Soc. 117, 7295 (1995).Google Scholar
6. (a) Chen, T. A., Jen, A. K.-Y. and Cai, Y. M.,Chem. Mater. 8, 607 (1996); (b) A. K.-Y. Jen, X. M. Wu and H. Ma, Chem. Mater. 10, 471 (1998); (c) H. Ma, X. J. Wang, X. M. Wu, S. Liu and A. K.-Y. Jen, Macromolecules 31, 4049 (1998); (d) H. Ma, A. K.-Y. Jen, J. Y. Wu, X. M. Wu, S. Liu, C. F. Shu, L. R. Dalton, S. R. Marder and S. Thayumanavan, Chem. Mater. 11, 2218 (1999).Google Scholar
7. Drost, K. J., Rao, V. P. and Jen, A. K.-Y., J. Chem. Soc., Chem. Commun. 369 (1994).Google Scholar
8. Mitsunobu, O., Synthesis 1 (1981).Google Scholar
9. Teng, C. C. and Man, H. T., Appl. Phys. Lett. 56, 1734 (1990).Google Scholar
10. (a) Smith, D. W. Jr., and Babb, D. A., Macromolecules 29, 852 (1996); (b) J. M. Ji, S. N. Sarathy, R. H. Neilson, J. D. Oxley, D. A. Babb, N. G. Rondan and D. W. Smith, Jr. Organomet. 17, 783 (1998).Google Scholar