Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:00:07.166Z Has data issue: false hasContentIssue false

HgTe-CdTe Multiple Quantum Wells

Published online by Cambridge University Press:  21 February 2011

C. A. Hoffman
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
D. J. Arnold
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
J. R. Meyer
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
F. J. Bartoli
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Y. Lansari
Affiliation:
North Carolina State University, Raleigh, NC 27695
J. W. Cook Jr.
Affiliation:
North Carolina State University, Raleigh, NC 27695
J. F. Schetzina
Affiliation:
North Carolina State University, Raleigh, NC 27695
J. N. Schulman
Affiliation:
Hughes Research Laboratories, Malibu CA 90265
Get access

Abstract

We report a detailed magneto-transport investigation of HgTe-CdTe multiple quantum wells. The data yield the first experimental confirmation of a theoretically-predicted “negative-gap” semiconducting region in wide-well Hg-based heterostructures. Gaps of up to 19 meV are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., Schetzina, J. F., and Schulman, J. N., Phys. Rev. B 39, 5208 (1989).Google Scholar
2. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Chu, X., and Faurie, J. P., 19th Int. Conf. Phys. Semicond. (Warsaw, 1988), ed. Zawadzki, W., (Polish Academy of Sciences, Warsaw, 1988), p. 467.Google Scholar
3. Johnson, N. F., Hui, P. M., and Ehrenreich, H., Phys. Rev. Lett. 61, 1993 (1988).Google Scholar
4. Meyer, J. R., Bartoli, F. J., Hoffman, C. A., and Schulman, J. N., Phys. Rev. B 38, 12457 (1988).Google Scholar
5. Schulman, J. N. and Chang, Y.-C., Phys. Rev. B 33, 2594 (1986).Google Scholar
6. Harris, K. A., Hwang, S., Lansari, Y., Cook, J. W. Jr., Schetzina, J. F., and Chu, M., J. Vac. Sci. Technol. A 5, 3085 (1987).Google Scholar
7. Berroir, J. M., Guldner, Y., Vieren, J. P., Voos, M., Chu, X., and Faurie, J. P., Phys. Rev. Lett. 62, 2024 (1989).Google Scholar
8. Hoffman, C. A., Meyer, J. R., Wagner, R. J., Bartoli, F. J., Chu, X., Faurie, J. P., Ram-Mohan, L. R., and Xie, H., J. Vac. Sci. Technol. (in press).Google Scholar
9. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., and Schetzina, J. F., Phys. Rev. B 40, 3867 (1989).Google Scholar
10. For comparison with past results, the equivalent ni 3D may be obtained from the relation ni 3D → ni 2D/dw.Google Scholar
11. In a previous paper (Ref. 9), a fit to the 3D intrinsic density expression yielded the slightly smaller value of 16 meV.Google Scholar
12. Dziuba, Z. and Wrobel, J., phys. stat. sol. b 100, 379 (1980).Google Scholar
13. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Perez, J. M., Furneaux, J. E., Wagner, R. J., Koestner, R. J., and Goodwin, M. W., J. Vac. Sci. Technol. A 6, 2775 (1988).Google Scholar
14. Guldner, Y., Rigaux, C., Grynberg, M., and Mycielski, A., Phys. Rev. B 8, 3875 (1973).Google Scholar
15. Sakaki, H., Noda, T., Hiralawa, K., Tanaka, M., and Matsusue, T., Appl. Phys. Lett. 51, 1934 (1987).Google Scholar