Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T19:17:43.610Z Has data issue: false hasContentIssue false

Grain Boundary Structure Control for Intergranular Stress-Corrosion Resistance

Published online by Cambridge University Press:  25 February 2011

G. Palumbo
Affiliation:
Ontario Hydro Research Division, 800 Kipling Avenue, Toronto, Canada M8Z 5S4
P. J. King
Affiliation:
Ontario Hydro Research Division, 800 Kipling Avenue, Toronto, Canada M8Z 5S4
P. C. Lichtenberger
Affiliation:
Ontario Hydro Research Division, 800 Kipling Avenue, Toronto, Canada M8Z 5S4
K. T. Aust
Affiliation:
Dept. of Metallurgy and Materials Science, University of Toronto, Toronto, Canada M5S 1A4
U. Erb
Affiliation:
Dept. of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada K7L 3N6
Get access

Abstract

A geometric model for intergranular stress corrosion cracking (IGSCC) is presented and used to evaluate the influence of grain boundary structure on the IGSCC resistance of polycrystalline materials. Preliminary observations regarding the structure of intergranular fracture paths in Alloy 600 C-ring specimens exposed to high temperature caustic media are noted to be consistent with the general predictions of the proposed geometric model and demonstrate that significant enhancement to bulk IGSCC resistance may be achieved through material processing considerations which result in (1) moderate increases in the frequency of structurally ‘special’ grain boundaries (i.e., interfaces close to low Σ CSL's) and (2) refinement in grain size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mimaki, T., Hashimoto, S. and Miura, S., Trans. Japan Inst. Met., (Suppl.), 22, 951 (1986).Google Scholar
2. Yamashita, M., Mimaki, T., Hashimoto, S. and Miura, S., Scripta Metall., 22, 1087 (1988).Google Scholar
3. Yamashita, M., Mimaki, T., Hashimoto, S. and Miura, S., J. Physique (coll.) C1, 715 (1990).Google Scholar
4. Yamashita, M., Yoshioka, M., Mimaki, T., Hashimoto, S. and Miura, S., Acta Metall., 38, 1619 (1990).Google Scholar
5. Yamashita, M., Mimaki, T., Hashimoto, S. and Miura, S., Phil. Mag. A, 63, 707 (1991).Google Scholar
6. Watanabe, T., Met. Trans. 14A, 531 (1983).Google Scholar
7. Roy, A., Erb, U. and Gleiter, H., Acta Metall., 30, 1847 (1982).Google Scholar
8. Watanabe, T., Tanaka, M. and Karashima, S., Symp. on Embrittlement of Liquid and Solid Metals, ed. Kandar, H., AIME, Warrendale PA, p.183 (1984).Google Scholar
9. Biscondi, M. and Goux, C., C.R. Acad. Sci., 25, 2806 (1964).Google Scholar
10. Lagarde, P. and Biscondi, M., Can. Met. Quart., 11 245 (1974).Google Scholar
11. Michaut, C., Silvent, A. and Sainfort, G., Mem. Scient. Rev. Metall., 21, 527 (1974).Google Scholar
12. Watanabe, T., Yamada, M., Shima, S. and Karashima, S., Philos. Mag. A, 40, 667 (1979).Google Scholar
13. Aust, K.T. and Iwao, O., Localized Corrosion. NACE-3, p. 62 (1974).Google Scholar
14. Erb, U., Gleiter, H. and Schwitzgebel, G., Acta Metall., 20, 1377 (1982).Google Scholar
15. Aust, K.T. and Palumbo, G., Trans. Japan Inst. Met. (suppl.), 22, 995 (1986).Google Scholar
16. Palumbo, G. and Aust, K.T., J. Physique (coll.), C5–45, 569 (1988).Google Scholar
17. Palumbo, G. and Aust, K.T., Acta Metall., 38, 2343 (1990).Google Scholar
18. Watanabe, T., Res. Mechanica, 11, 47 (1984).Google Scholar
19. K.T. Aust and Palumbo, G., Proc. Int. Svmp. Advanced Structural Materials. Pergamon Press, ed. Wilkinson, D., 2, pp. 227233 (1989).Google Scholar
20. Aust, K.T. and Palumbo, G., in Structure and Property Relationships for Interfaces, (eds. Walter, J.L., King, A.H., and Tangri, K.) ASM, Materials Park, OH, p. 3 (1991).Google Scholar
21. Palumbo, G. and Aust, K.T.. Recrvstallization '90. TMS-AIME, ed. Chandra, T. p. 101, (1990).Google Scholar
22. Palumbo, G., King, P.J., Aust, K.T., Erb, U., and Lichtenberger, P.C.. Scripta Metall, et Mater., 25, 1775 (1991)Google Scholar
23. Warrington, D.H. and Boon, M., Acta Metall., 21 599 (1975).Google Scholar
24. Randle, V. and Ralph, B., Proc. 46th Ann. Meeting Electron Microsc. Soc. Am. (Bailey, G.W. ed.) San Fransisco Press Inc. p. 630, (1988).Google Scholar
25. Blanchet, J., Coriou, H., Grail, L., Mahieu, C., Otter, C., and Turluer, G., J. Nucl. Mater., 55, 187 (1975).CrossRefGoogle Scholar
26. Randle, V., Ralph, B. and Dingley, D., Acta Metall., 36, 267 (1988).Google Scholar
27. Bleris, G.L., Antonopoulos, J.G., Karakostas, T.H. and Delavignette, P., Physica Status Solidi, 67, 249 (1981).Google Scholar
28. Brandon, D.G., Acta Metall., 14, 1479 (1966).Google Scholar
29. Aust, K.T. and Rutter, J.W., Trans. TMS-AIME, 218, 1023 (1960).Google Scholar
30. Aust, K.T., Trans. TMS-AIME, 221, 758 (1961).Google Scholar
31. Ferran, G., Cizeron, G. and Aust, K.T., Acad. Sci. Paris, 251, 3593 (1963).Google Scholar
32. Ferran, G., Cizeron, G. and Aust, K.T., Mem. Sci. Rev. Met., 54, 1067 (1967).Google Scholar
33. Palumbo, G. and Aust, K.T., in Atomic Level Properties of Interface Materials (eds. Yip, S. and Wolf, D.). Chapman and Hall, London (in press).Google Scholar
34. Palumbo, G., Erb, U., King, P.J., Aust, K.T., and Lichtenberger, P.C., to be published.Google Scholar