Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T10:08:10.260Z Has data issue: false hasContentIssue false

Fracture Toughness of Diamond Measured by Vickers Indenter Reloading Technique

Published online by Cambridge University Press:  15 February 2011

Sergey N. Dub*
Affiliation:
Institute for Superhard Materials of the Ukrainian National Academy of Sciences, 2 Avtozavodskaya Str., Kiev, 254074, Ukraine
Get access

Abstract

The crack initiation sequence during Vickers indenter penetration into the (100) plane of diamond was observed. It was revealed that for <110> orientation, two median cracks are initiated during the loading half of the cycle. In unloading, the median cracks grow toward the surface and turn into half-penny cracks. It was proposed to use half-penny cracks as initials and evaluate fracture toughness in second loading from a crack-starting load for these cracks. The length of initial half-penny cracks was measured after first loading cycle from opposite side of the sample. Test results obtained by the reloading technique agree well with the data on conventional fracture toughness determination by indentation from the length of cracks after unloading.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rowcliffe, D.J. and Johnson, S.M., SPIE Vol.681 Laser and Nonlinear Optical Materials, 143 (1986).Google Scholar
2. Nalyetov, A.N., Klyuev, Yu. A., Grigoryev, O.N., Mil'man, Yu.V. and Trefilov, V.I., Rep. USSR Acad. Sci. 246, 83 (1978).Google Scholar
3. Dub, S.N., Maistrenko, A.L. and Mal'nev, V.I., in Problems of Fracture in Metals (MDNTP, Moskow, 1980) p. 83.Google Scholar
4. Field, J.E. and Freeman, C.J., Philos. Mag A 43, 595 (1981).Google Scholar
5. Dub, S.N. and Mal'nev, V.I., in The Methods of Study of Superhard Materials Properties (ISM AN USSR, Kiev, 1981) p. 21.Google Scholar
6. Novikov, N.V. and Dub, S.N., J. Hard Mater. 2, 3 (1991).Google Scholar
7. Yu.Klyuev, A., Naletov, A.M. and Nepsha, V.I., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J.E. and Roy, R. (Mater. Res. Soc., Pittsburg, 1991) p. 149.Google Scholar
8. Novikov, N.V., Dub, S.N. and Mal'nev, V.I., J. Hard Mater. 4, 19 (1993).Google Scholar
9. Novikov, N.V., Dub, S.N., Mal'nev, V.I. and Beskrovanov, V.V., Diamond and Relat. Mater. 3, 198(1994).Google Scholar
10. Drory, M., Gardinier, Ci.F. and Speck, J.S., J. Am. Ceram. Soc. 74, 3148 (1991).Google Scholar
11. Drory, M. and Gardinier, Ci.F., J. Mater. Res. 7, 781 (1992).Google Scholar
12. Mecholsky, J.J., Tsai, Y.L. and Drawl, W.R., J. Appl. Phys. 71, 4875 (1992).Google Scholar
13. Sussman, R.S., Brandon, J.R., Scarsbrook, G.A., Sweeney, C.G., Valentine, T. J., Whitehead, A.J. and Wort, C.J.H., Diamond and Relat. Mater. 3, 303 (1994).Google Scholar
14. Evans, A.G. and Charles, E.A., J. Am. Ceram. Soc. 59, 371 (1976).Google Scholar
15. Lawn, B.R., Evans, A.G. and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).Google Scholar
16. Niihara, K., Morena, R. and Hasselman, D.P.H., J. Mater. Sci. Lett. 1, 13 (1982).Google Scholar
17. Shetty, D.K., Wright, I.G., Mincer, P.H. and Claner, A.H., J. Mater. Sci. 20, 1873 (1985).Google Scholar
18. Laugier, M.T., J. Mater. Sci. Lett. 6, 355 (1987).Google Scholar
19. Liang, K.M., Orange, G. and Fantozzi, G., J. Mater. Sci. 25, 207 (1990).Google Scholar
20. Dub, S.N. and Maistrenko, A.L., in Fracture Mechanics of Ceramics Vol.10 edited by Bradt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M. and Shevchenko, V. Ya. (Plenum Press, New York and London, 1992), p. 109.Google Scholar
21. Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).Google Scholar
22. Tanaka, K., J. Mater. Sci. 22, 1501 (1987).Google Scholar
23. Dub, S.N. and Malogolovets, V.G., presented at the 4th Europ. Conf. “Diamond Films 94”, II Ciocco, Italy (unpublished).Google Scholar
24. Nowak, R., Ueno, K. and Kinoshita, M., in Fracture Mechanics of Ceramics Vol.10 edited by Bradt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M. and Shevchenko, V. Ya. (Plenum Press, New York and London, 1992), p. 155.Google Scholar
25. Henshall, J.L., Rowcliffe, D.B. and Edington, J.W., J. Am. Ceram Soc. 60, 373 (1977).Google Scholar
26. Aptekman, A.A., Bakun, O.V., Grigoryev, O.N., and Trefilov, V.I., Rep. USSR Acad. Sci. 290, 845 (1986).Google Scholar
27. Brookes, C.A., Diamond and Relat. Mater. 1, 13 (1991).Google Scholar
28. Li, Z., Ghosh, A., Kobayashi, A.S. and Bradt, R.C., J. Am. Ceram. Soc. 72, 904 (1989).Google Scholar
29. Sullivan, J.D. and Lauzon, P.H., J. Mater. Sci. Lett. 5, 247 (1986).Google Scholar
30. Cook, R.F. and Pharr, G. M., J. Am. Ceram. Soc. 73, 787 (1990).Google Scholar
31. Guillou, M.-O., Henshall, J.L., Hooper, R.M. and Carter, G.M., J. Hard Mater. 3, 421 (1992).Google Scholar
32. Kirchner, H.P. and Larchuk, T.J., J. Am. Ceram. Soc. 65, 506 (1982).Google Scholar
33. Jones, S.L., Norman, C.J. and Shahani, R., J. Mater. Sci. Lett. 6, 721 (1987).Google Scholar
34. Lawn, B.R. and Fuller, E.R., J. Mater. Sci. 10, 2016 (1975).Google Scholar
35. Tanaka, K., Kitahara, Y., Ichinose, Y. and limura, T., Acta Metall. 32, 1719 (1984).Google Scholar
36. Cherepanov, G.P., Mechanics of Brittle Fracture (Nauka, Moscow, 1974), p. 399.Google Scholar
37. Marshall, D.B., J. Amer. Ceram. Soc. 66, 127 (1983).Google Scholar
38. Danyluk, S., Wear 103, 149 (1985).Google Scholar
39. Brede, M., Hsia, K.J. and Argon, A.S., J. Appl. Phys. 70, 758 (1991).Google Scholar