Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T10:11:16.107Z Has data issue: false hasContentIssue false

Formation of Luminescent Si Nanocrystals by High-Temperature Annealing of Ion-Beam-Sputtered Si/SiO2 Multilayers

Published online by Cambridge University Press:  10 February 2011

Suk-Ho Choi
Affiliation:
College of Electronics and Information and Institute of Natural Sciences, Kyung Hee University, Suwon 449-701, Korea
Jun Sung Bae
Affiliation:
College of Electronics and Information and Institute of Natural Sciences, Kyung Hee University, Suwon 449-701, Korea
Kyung Jung Kim
Affiliation:
Nano Surface Group, Korea Research Institute of Standards and Science, P.O.Box 102, Yusong, Taejon 305-600, Korea
Dae Won Moon
Affiliation:
Nano Surface Group, Korea Research Institute of Standards and Science, P.O.Box 102, Yusong, Taejon 305-600, Korea
Get access

Abstract

Si/SiO2 multilayers (MLs) have been prepared under different deposition temperatures (TS) by ion beam sputtering. The annealing at 1200°C leads to the formation of Si nanocrystals in the Si layer of MLs. The high resolution transmission electron microscopy images clearly demonstrate the existence of Si nanocrystals, which exhibit photoluminescence (PL) in the visible range when TS is ≥ 300°C. This is attributed to well-separation of nanocrystals in the higher-TS samples, which is thought to be a major cause for reducing non-radiative recombination in the interface between Si nanocrystal and surface oxide. The visible PL spectra are enhanced in its intensity and are shifted to higher energy by increasing TS. These PL behaviours are consistent with the quantum confinement effect of Si nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khriachtchev, L., Kilpela, O., Karirinne, S., Keranen, J., and Lepisto, T., Appl. Phys. Lett. 78, 323 (2001).Google Scholar
2. Vinciguerra, V., Franzo, G., Priolo, F., Iacona, F., and Spinella, C., J. Appl. Phys. 87, 8165 (2000).Google Scholar
3. Photopoulos, P., Nassiopoulou, A. G., Kouvatsos, D. N., and Travlos, A., Appl. Phys. Lett 76, 3588 (2000).Google Scholar
4. Kamenev, B. V. and Nassiopoulou, A. G., J. Appl. Phys. 90, 5735 (2001).Google Scholar
5. Ledoux, G., Gong, J., and Huisken, F., Appl. Phys. Lett. 79, 4028 (2001).Google Scholar
6. Cheylan, S. and Elliman, R. G., Appl. Phys. Lett. 78, 1225 (2001).Google Scholar
7. Choi, W. C., Kim, E. K., Min, S.K., Park, C.Y., Kim, J. H., and Seong, T.Y., Appl. Phys. Lett. 70, 3014 (1997).Google Scholar
8. Saha, C., Das, S., Ray, S. K., and Lahiri, S.K., J. Appl. Phys. 83, 4472 (1998).Google Scholar
9. Lambrinos, M. F., Valizadeh, R., and Colligon, J. S., J. Vac. Sci. Technol. B16, 589 (1998).Google Scholar
10. Dautremon Smith, W. C. and Feldman, L. C., J.Vac. Sci. Technol. A3, 873 (1985).Google Scholar
11. Kim, K. J., Moon, D. W., Surf. Interface Anal. 26, 9 (1998).Google Scholar
12. Zhang, S., Zhang, W., and Yuan, J., Thin Solid Films 326, 92 (1998).Google Scholar
13. Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., and Blasing, J., Appl. Phys. Lett 80, 661 (2002).Google Scholar
14. Pavesi, L., J. Appl. Phys. 80, 216 (1996).Google Scholar
15. Vial, J. C., Bsiesy, A., Gaspard, F., Herino, R.,Ligeon, M., Muller, F., Romestain, R., and Macfarlane, R.M., Phys. Rev. B 45, 14171 (1992).Google Scholar
16. Brongersma, M. L., Polman, A., Min, K. S., and Atwater, H. A., J. Appl. Phys. 86, 759 (1999).Google Scholar