Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T21:17:19.888Z Has data issue: false hasContentIssue false

First Principles Study of Boron in Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Iván Santos
Affiliation:
[email protected], Universidad de Valladolid, Dpto. de Electricidad y Electrónica, E.T.S.I. Telecomunicación, Campus Miguel Delibes s/n, 47011 Valladolid, Valladolid, N/A, Spain
Wolfgang Windl
Affiliation:
[email protected], The Ohio State University, Dept. Materials Science and Engineering, Columbus, OH, 43201, United States
Lourdes Pelaz
Affiliation:
[email protected], Universidad de Valladolid, Dpto. Electricidad y Electrónica, Valladolid, N/A, Spain
Luis Alberto Marqués
Affiliation:
[email protected], Universidad de Valladolid, Dpto. Electricidad y Electrónica, Valladolid, N/A, Spain
Get access

Abstract

We have carried out an ab initio simulation study of boron in amorphous silicon. In order to understand the possible structural environments of B atoms, we have studied substitutional-like (replacing one Si atom in the amorphous cell by a B atom) and interstitial-like (adding a B atom into an interstitial space) initial configurations. We have evaluated the Fermi-level dependent formation energy of the neutral and charged (±1) configurations and the chemical potential for the neutral ones. For the interstitial-like boron atom, we have find an averaged formation energy of 1.5 eV. For the substitutional case, we have found a dependence of the chemical potential on the distance to Si neighbors, which does not appear for the interstitial ones. From MD simulations, we could observe a diffusion event for an interstitial-like boron atom with a migration barrier of 0.6 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.International Technology Roadmap for Semiconductors, http://public.itrs.net.Google Scholar
2. Crowder, B. L., Ziegler, J. F. and Cole, G. W., Ion Implantation in Semiconductors and Other Materials., edited by Crowder, B.L. (Plenum, New York, 1973), p. 257.Google Scholar
3. Hodgson, R. T., Deline, V., Mader, S. M. and Gelpey, J. C., Appl. Phys. Lett. 44, 589 (1984).Google Scholar
4. Sedgwick, T. O., Cohen, S. A., Oehrlwin, G. S., Deline, V. R., Kalish, R. and Shatas, S., VLSI Science and Technology 1984., edited by Beam, K.E. and Rozgonyi, G. (The Electrochemical So-ciety, Pennington, NJ, 1984), vol. 7.Google Scholar
5. Hofker, W. K., Werner, H. W., Oosthoek, D. and Koeman, N. J., Appl. Phys. 2, 265 (1973).Google Scholar
6. Stolk, P. A., Gossmann, H. J., Eagleshman, D. J., Jacobson, D. C. and Poate, J. M., Appl. Phys. Lett. 66, 568 (1995).Google Scholar
7. Venezia, V. C., Duffy, R., Pelaz, L., Aboy, M., Heringa, A., Griffin, P. B., Wang, C. C., Hopstaken, M. J. P., Tamminga, Y., Dao, T., Pawlak, B. J. and Roozeboom, F., International Electron De-vices Meeting Technical Digest 2003, 489492 (2003).Google Scholar
8. Solmi, S., Landi, E. and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).Google Scholar
9. Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1989).Google Scholar
10. Fahey, P., Griffin, P. B. and Plummer, J. P., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
11. Tarnow, E., J. Phys. Condens. Matter. 4, 5405 (1992).Google Scholar
12. Zhu, J., Rubia, T. Diaz de la, Yang, L., Mailhiot, C., Gilmer, G., Phys. Rev. B 54, 4741 (1996).Google Scholar
13. Sadigh, B., Lenosky, T. J., Theiss, S. K. and Caturla, M. J., Phys. Rev. Lett. 83, 4341 (1999).Google Scholar
14. Windl, W., Bunea, M. M., Stumpf, R., Dunham, S. T. and Masquelier, M. P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
15. Caturla, M. J., Johnson, M. D. and Rubia, T. Diaz de la, Appl. Phys. Lett. 72, 2736 (1998).Google Scholar
16. Pelaz, L., Gilmer, G. H., Gossmann, H. J. and Rafferty, C.S., Appl. Phys. Lett. 74, 3657 (1999).Google Scholar
17. Luo, W., Rasband, P. B., Clancy, P. and Roberts, B. W., J. Apply. Phys. 84, 2476 (1998).Google Scholar
18. Liu, X. Y., Windl, W. and Masquelier, M. P., Appl. Phys. Lett. 77, 2018 (2000).Google Scholar
19. Fedders, P. A. and Drabold, D. A., Phys. Rev. B 56, 1864 (1997).Google Scholar
20. Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985).Google Scholar
21. Mousseau, N. and Barkema, G. T., Phys. Rev. B 61, 1898 (2000).Google Scholar
22. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14251 (1994); G. Kresse and J. Furthmüller, Mater. Sci. 6, 15 (1996) Phy. Rev. B 54, 11169 (1996).Google Scholar
23. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
24. Windl, W., Phys. Stat. Sol. B 241, 2313 (2004).Google Scholar
25. Lannin, J.S., Pilione, L.J. and Kshirsagar, S.T., Phys. Rev. B 26, 3506 (1982).Google Scholar
26. Rotaru, C., Nastase, S. and Tomozeiu, N., Phys. Stat. Sol A 171, 365 (1999).Google Scholar
27. Jónsson, H., Mills, G. and Jacobsen, K., in Classical and Quantum Dynamics in Condensed Phase Simulations., ed. by Berne, B.J. et al. (World Scientific, Singapore, 1998), p. 385.Google Scholar
28. Venezia, V. C., Duffy, R., Pelaz, L., Hopstaken, M. J. P., Maas, G. C. J., Dao, T., Tamminga, T. and Graat, T., Mat. Sci. and Eng. B 124-125, 245 (2005).Google Scholar