Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T16:07:30.819Z Has data issue: false hasContentIssue false

Fidelity of Holographic Lithography for Fabrication of 3D SU-8 Photonic Structures and How to Minimize Distortion by Optical Design

Published online by Cambridge University Press:  31 January 2011

Xuelian Zhu
Affiliation:
[email protected], University of Pennsylvania, Materials Science and Engineering, Philadelphia, Pennsylvania, United States
Yongan Xu
Affiliation:
[email protected], University of Pennsylvania, Materials Science and Engineering, Philadelphia, Pennsylvania, United States
Shih-Chieh Cheng
Affiliation:
[email protected], University of Pennsylvania, Materials Science and Engineering, Philadelphia, Pennsylvania, United States
Shu Yang
Affiliation:
[email protected], University of Pennsylvania, Materials Science and Engineering, Philadelphia, Pennsylvania, United States
Get access

Abstract

Theoretical analysis can impart great benefits on the rationale design of 3D photonic structures by revealing the underlying mechanisms of structural distortion during each processing step. In this report, we quantitatively study the distortion of a three-term diamond-like structure fabricated in SU-8 polymer by four-beam interference lithography, which can be attributed to refraction at the air-film interface, and resist film shrinkage during lithographic process. In study of photonic bandgap (PBG) properties of Si photonic crystals templated by the SU-8 structures, we find that the distortion has degraded the quality of PBGs. Furthermore, we theoretically design new optical setups to fabricate three-term diamond-like structure with minimal deformation. Instead of single exposure of four beams, we use triple exposure of two beams, one from the central beam and the other from the side beam each time. A set of new linear polarization vectors is suggested to enhance the contrast between the minimal and maximal intensities of interference pattern.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
2 John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
3 Joannopoulos, J.D., Johnson, S.G., Meade, R.D., and Winn, J.N., Photonic crystals, 2nd ed. (Princeton University Press, 2008).Google Scholar
4 Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., and Bur, J., Nature 394, 251 (1998).Google Scholar
5 Kawata, S., Sun, H. B., Tanaka, T., and Takada, K., Nature 412, 697 (2001).Google Scholar
6 Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., and Turberfield, A. J., Nature 404, 53 (2000).Google Scholar
7 Vlasov, Y. A., Bo, X. Z., Sturm, J. C., and Norris, D. J., Nature 414, 289 (2001).Google Scholar
8 Kennedy, S. R., Brett, M. J., Toader, O., and John, S., Nano Letters 2, 59 (2002).Google Scholar
9 Seet, K. K., Mizeikis, V., Matsuo, S., Juodkazis, S., and Misawa, H., Adv. Mater. 17, 541 (2005).Google Scholar
10 Ullal, C. K., Maldovan, M., Wohlgemuth, M., and Thomas, E. L., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 948 (2003).Google Scholar
11 Sutherland, R. L., Tondiglia, V. P., Natarajan, L. V., Chandra, S., Tomlin, D., and Bunning, T. J., Opt. Express 10, 1074 (2002).Google Scholar
12 Miklyaev, Y. V., Meisel, D. C., Blanco, A., G. von Freymann, Busch, K., Koch, W., Enkrich, C., Deubel, M., and Wegener, M., Appl. Phys. Lett. 82, 1284 (2003).Google Scholar
13 Ullal, C. K., Maldovan, M., Thomas, E. L., Chen, G., Han, Y. J., and Yang, S., Appl. Phys. Lett. 84, 5434 (2004).Google Scholar
14 Zhu, X., Xu, Y., and Yang, S., Opt. Express 15, 16546 (2007).Google Scholar
15 Born, M. and Wolf, E., Principles of optics : electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge, U.K.; New York, 1999).Google Scholar
16 Zhong, Y. C., Zhu, S. A., Su, H. M., Wang, H. Z., Chen, J. M., Zeng, Z. H., and Chen, Y. L., Appl. Phys. Lett. 87, 061103 (2005).Google Scholar
17 Moon, J. H., Yang, S., Dong, W. T., Perry, J. W., Adibi, A., and Yang, S. M., Opt. Express 14, 6297 (2006).Google Scholar
18 Cai, L. Z., Yang, X. L., and Wang, Y. R., Opt. Lett. 27, 900 (2002).Google Scholar
19 Hahn, Th., International tables for crystallography. Vol A, Space-group symmetry, 5th ed. ed. (Kluwer, Dordrecht, London, 2002).Google Scholar
20 Shmueli, U., International tables for crystallography. Vol. B, Reciprocal space, 2nd ed. (Kluwer, Dordrecht, Boston, 2001).Google Scholar
21 Meisel, D. C., Diem, M., Deubel, M., Willard, F. Perez, Linden, S., Gerthsen, D., Busch, K., and Wegener, M., Adv. Mater. 18, 2964 (2006).Google Scholar
22 Zhou, W. H., Kuebler, S. M., Braun, K. L., Yu, T. Y., Cammack, J. K., Ober, C. K., Perry, J. W., and Marder, S. R., Science 296, 1106 (2002).Google Scholar
23 Johnson, S. G. and Joannopoulos, J. D., Opt. Express 8, 173 (2001).Google Scholar
24 Jang, J. H., Ullal, C. K., Maldovan, M., Gorishnyy, T., Kooi, S., Koh, C. Y., and Thomas, E. L., Adv. Funct. Mater. 17, 3027 (2007).Google Scholar
25 Gauthier, R. C. and Mnaymneh, K. W., Opt. Laser Technol. 36, 625 (2004).Google Scholar
26 Lai, N. D., Liang, W. P., Lin, J. H., Hsu, C. C., and Lin, C. H., Opt. Express 13, 9605 (2005).Google Scholar
27 Liu, Y., Liu, S., and Zhang, X. S., Appl. Opt. 45, 480 (2006).Google Scholar
28 Dwivedi, A., Xavier, J., Joseph, J., and Singh, K., Appl. Opt. 47, 1973 (2008).Google Scholar
29 Hayek, A., Y Xu, Okada, T., Barlow, S., Zhu, X, Moon, J. H., Marder, S. R., and Yang, S., J. Mater. Chem. 18, 3316 (2008).Google Scholar