Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T08:29:03.159Z Has data issue: false hasContentIssue false

Femtosecond pump and probe spectroscopy of optical nonlinearities in an InGaN/GaN heterostructure

Published online by Cambridge University Press:  11 February 2011

Fei Chen
Affiliation:
Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
A. N. Cartwright
Affiliation:
Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
Get access

Abstract

The magnitudes and evolutions of two photoinduced absorption nonlinearities, absorption bleaching and field screening, were compared and investigated by employing electroabsorption and femtosecond pump-probe spectroscopy in a biased InGaN/GaN p-i-n double heterostructure. Steady state electroabsorption measurements indicate the field induced absorption coefficient changes in this structure are caused by the Franz-Keldysh effect. The temporal resolution of the absorption bleaching spectra suggests that the photoinduced carriers rapidly relaxed to the InGaN band edge within several picoseconds. As the applied reverse bias field was increased, the transition of the differential absorption spectral signature from the signature for absorption bleaching to the signature for field screening was observed. The magnitude of the change in absorption due to photoinduced carrier screening of the applied field is quantified and compared to absorption bleaching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. Part 2 35, L74 (1996).Google Scholar
2. Nagahama, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T., Sano, M., Matsumura, H., Umemoto, H., Chocho, K., and Mukai, T., Jpn. J. Appl. Phys. Part 2 39, L647 (2000).Google Scholar
3. Tojyo, T., Asano, T., Takeya, M., Hino, T., Kijima, S., Goto, S., Uchida, S., and Ikeda, M., Jpn. J. Appl. Phys. Part 1 40 3206, (2001).Google Scholar
4. Kneissl, M., Paoli, T., Kiesel, P., Treat, D. W., Teepe, M., Miyashita, N., and Johnson, N. M., Appl. Phys. Lett. 80, 3283 (2002).Google Scholar
5. Huang, X. R., Cartwright, A. N., Harken, D. R., McCallum, D. S., Smirl, A. L., Sánchez-Rojas, J. L., Sacedón, A., Calleja, E., and Muñoz, E., J. Appl. Phys. 79, 417 (1995).Google Scholar
6. Huang, X. R., Harken, D. R., Cartwright, A. N., Smirl, A. L., Sánchez-Rojas, J. L., Sacedón, A., Calleja, E., and Muñoz, E., Appl. Phys. Lett. 67, 950 (1995).Google Scholar
7. Cartwright, A. N., McCallum, D. S., Boggles, T. F., Smirl, A. L., Moise, T. S., Guido, L. J., Barker, R. C., and Wherrett, B. S., J. Appl. Phys. 73, 7767 (1993).Google Scholar
8. Schmitt-Rink, S., Chemla, D. S., and Miller, D. A. B., Phys. Rev. B 32, 6601 (1985).Google Scholar
9. Nagura, C., Suda, A., Kawano, H., Obara, M., and Midorikawa, K., Appl. Opt. 41, 3735 (2002).Google Scholar
10. Renner, F., Kiesel, P., Döhler, G. H., Kneissl, M., Van de Walle, C. G., and Johnson, N. M., Appl. Phys. Lett. 81, 490 (2002).Google Scholar