Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:05:39.972Z Has data issue: false hasContentIssue false

Factors Affecting Spatial Resolution for Compositional Analysis in Stem

Published online by Cambridge University Press:  25 February 2011

John B. Vander Sande
Affiliation:
Center for Materials Science and Enginerring, Massachusetts Inst. of Technology, Room 13-5025, Cambridge, Mass. 02139
Anthony J. Garratt-Reed
Affiliation:
Center for Materials Science and Enginerring, Massachusetts Inst. of Technology, Room 13-5025, Cambridge, Mass. 02139
Get access

Abstract

This paper discusses the application of the scanning transmission electron microscope (STEM) to the detection of segregation at interfaces via the monitoring of X-rays generated when the incident electrons interact with the segregant. Issues of spatial resolution and minimum detectable concentration are discussed. Specific examples, emphasizing the importance of probe size, sample thickness, and sample orientation, are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chapman, J N, Gray, C C, Robertson, B W, Nicholson, W A P (1983) X-ray Spectrom. 12, 153162.10.1002/xrs.1300120407Google Scholar
2 Chapman, J N, Nocholson, W A P, Crozier, P A (1985) presented at conference on electron-specimen interactions, Cambridge, 1983, J. Microsc., in press.Google Scholar
3 Doig, P, Flewitt, P E J (1982) Met. Trans. A 13A, 13971403. 10.1007/BF02642877Google Scholar
4 Doig, P, Flewitt, P E J (1983) J. Microsc. 130, 377388.10.1111/j.1365-2818.1983.tb04557.xGoogle Scholar
5 Fries, E, Imeson, D, Garratt-Reed, A J, Vander, Sande J B (1982) Ultramicroscopy 9 295302. 10.1016/0304-3991(82)90215-7Google Scholar
6 Garratt-Reed, A J (1985) Scanning Electron Microsc. 1985; in press.Google Scholar
7 Goldstein, J I, Costley, J L, Lorimer, G W, Reed, S J B (1977) Scanning Electron Microsc. 1977; 1:315324. Google Scholar
8 Gray, C C, Chapman, J N, Nicholson, W A P, Robertson, B W, Ferrier, R P, X-ray Spectrom. 12, 163–169.10.1002/xrs.1300120408Google Scholar
9 Hall, E L, Imeson, D, Vander, Sande J B (1981) Phil. Mag. A43, 15691585. 10.1080/01418618108239528Google Scholar
10 Hutchings, R, Loretto, M H, Jones, I P, Smallman, R E (1979) Ultramicroscopy 3, 401411.10.1016/S0304-3991(78)80062-XGoogle Scholar
11 Imeson, D (1982) Ultramicroscopy 9, 307310.10.1016/0304-3991(82)90217-0Google Scholar
12 Imeson, D, Vander, Sande J B (1981) Proc. 39th ann. EMSA meeting, ed GW, Bailey, Claitors Publishing Div., Baton Rouge, La., 282283. Google Scholar
13 Joy, D C, Maher, D M (1977) Scanning Electron Microsc. 1977; 1:325334. Google Scholar
14 Kyser, D F (1979) in “Introduction to Analytical Electron Microscopy”, eds. JJ, Hren, JI, Goldstein, DC, Joy, Plenum Press, New York, Ch. 6.Google Scholar
15 Stephenson, T A, Loretto, M H, Jones, I P (1981) in “Quantitative Microanalysis with High Spatial Resolution”, The Metals Society (London) Book Number 277, 5356.Google Scholar
16 Vander, Sande J B, Garratt-Reed, A J, Chiang, Y-M, Thorvaldsson, T (1984) “Ultramicroscopy, 14, 6574.10.1016/0304-3991(84)90108-6Google Scholar