Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T10:28:08.705Z Has data issue: false hasContentIssue false

Facile Synthesis of Pure Boron Nanotubes and Nanofibers

Published online by Cambridge University Press:  28 March 2011

Jinwen Liu
Affiliation:
Materials Science and Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, U.S.A
Zafar Iqbal*
Affiliation:
Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, U.S.A Materials Science and Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, U.S.A
*
*Corresponding author: [email protected]
Get access

Abstract

A facile and scalable chemical vapor deposition (CVD) process in flowing argon using a solid instead of a reactive gaseous boron precursor has been carried out to synthesize crystalline boron nanostructures comprising of relatively straight boron nanotubes (BNTs) and nanofibers (BNFs). The synthesis involves the use of solid magnesium boride as the boron and magnesium catalyst precursor, nickel boride as co-catalyst, and MCM-41 zeolite as the growth template. The BNTs and BNFs produced have a narrow distribution of diameters between about 10 nm to 20 nm and lengths from about 500 nm to above 1 μm. Scanning and transmission electron microscope (SEM and TEM) imaging together with electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) have been conducted to characterize the structure, morphology and growth mechanism of these novel nanostructures. High resolution TEM imaging has been used to identify BNTs and BNFs in the nanostructures synthesized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Hamada, N., Sawada, S. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
3. Odom, T. W., Huang, J., Kim, P. and Lieber, C. M., Nature 391, 62 (1998).Google Scholar
4. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. and Dekker, C., Nature 391, 59 (1998).Google Scholar
5. Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G. and Zettl, A., Science 269, 966 (1995).Google Scholar
6. Chopra, N. G. and Zettl, A., Solid State Commun. 105, 297 (1998).Google Scholar
7. Ciuparu, D., Klie, R. F., Zhu, Y. and Pfefferle, L., J. Phys. Chem. B 108, 3967 (2004).Google Scholar
8. Boustani, I., Quandt, A., Hernandez, E. and Rubio, A., J. Chem. Phys. 110, 3176 (1999).Google Scholar
9. Quandt, A. and Liu, A. Y., Phys. Rev. B 64, 125422 (2001).Google Scholar
10. Li, X., Grubisic, A., Stokes, S. T., Cordes, J., Ganteför, G. F., Bowen, K. H., Kiran, B., Willis, M., Jena, P., Burgert, R. and Schnöckel, H., Science 315, 356 (2007).Google Scholar
11. Fujimori, M., Nakata, T., Nakayama, T., Nishibori, E., Kimura, K., Takata, M. and Sakata, M., Phys. Rev. Lett. 82, 4452 (1999).Google Scholar
12. Dresselhaus, M. S., Dresselhaus, G. and Eklund, P., Science of Fullerences and Carbon Nanotubes, (Academic Press, San Diego, 1996).Google Scholar
13. Yang, X., Ding, Y. and Ni, J., Phys. Rev. B 77, 041402 (2008).Google Scholar
14. Boustani, I. and Quandt, A., Computational Materials Science 11, 132 (1998).Google Scholar
15. Lourie, O. R., Jones, C. R., Bartlett, B. M., Gibbons, P. C., Ruoff, R. S. and Buhro, W. E., Chem. Mat. 12, 1808 (2000).Google Scholar
16. Tang, H. and Ismail-Beigi, S., Phys. Rev.Lett. 99, 115501 (2007).Google Scholar
17. Boustani, I. and Quandt, A., Europhys. Lett. 39, 527 (1997).Google Scholar
18. Gindulyté, A., Lipscomb, W. N. and Massa, L., Inorg.Chem. 37, 6544 (1998).Google Scholar
19. Xu, T.T., Zheng, J-G., Wu, N., Nicholls, A.W., Roth, J.R., Dikin, D.A. and Ruoff, R.S., Nano Lett. 4, 963 (2004).Google Scholar
20. Wang, Q., Sha, J., Wang, L., Su, Z., Ma, X., Wang, J. and Wang, D., J. Mater. Sci. 41, 3547 (2006).Google Scholar