Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:17:10.308Z Has data issue: false hasContentIssue false

Fabrication of ZnO Bridging Nanowire Device by a Single-Step Chemical Vapor Deposition Method

Published online by Cambridge University Press:  01 February 2011

Yanbo Li
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Ippei Nagatomo
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Ryohei Uchino
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Ichiro Yamada
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Jean-Jacques Delaunay
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Get access

Abstract

ZnO nanowires are directly integrated into a working device by a single-step chemical vapor deposition (CVD) method. Gold catalyst is patterned on a quartz glass substrate using a comb-shaped shadow mask and then ZnO is grown on the patterned substrate by CVD. Thick ZnO layers formed on the gold-patterned areas serve as native electrodes. Ultra-long (˜100 μm) ZnO nanowires grown across the gap between the ZnO electrodes and the nanowires serve as the sensing elements of the device. The device exhibits high sensitivity and fast response to UV illumination in air. Our method can be used to fabricate other metal oxide semiconductor bridging nanowire devices, which have promising applications in photodetection and gas sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kind, H., Yan, H., Messer, B., Law, M., and Yang, P., Adv. Mater. 14, 158 (2002).Google Scholar
2. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
3. Ju, S., Facchetti, A., Xuan, Y., Liu, J., Ishikawa, F., Ye, P., Zhou, C., Marks, T. J., and Janes, D. B., Nature Nanotech. 2, 378 (2007).Google Scholar
4. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
5. Delaunay, J.-J., Nagatomo, I., Uchino, R., Li, Y. B., Shuzo, M., and Yamada, I., Adv. Mater. Res. 47, 634 (2008).Google Scholar
6. Takahashi, Y., Kanamori, M., Kondoh, A., Minoura, H., and Ohya, Y., Jpn. J. Appl. Phys. 33, 6611 (1994).Google Scholar
7. Lyu, S. C., Zhang, Y., and Lee, C. J., Chem. Mater. 15, 3294 (2003).Google Scholar
8. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mater. 13, 113 (2001).Google Scholar
9. Li, Y., Zheng, M., Ma, L., Zhong, M., and Shen, W., Inorg. Chem. 47, 3140 (2008).Google Scholar
10. Fan, Z., Chang, P., Lu, J. G., Walter, E. C., Penner, R. M., Lin, C., and Lee, H. P., Appl. Phys. Lett. 85, 6128 (2004).Google Scholar
11. Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H., and Wang, D., Nano Lett. 7, 1003 (2007).Google Scholar
12. Zhang, X., Zhang, Y., Wang, Z. L., Mai, W., Gu, Y., Chu, W., and Wu, Z., Appl. Phys. Lett. 92, 162102 (2008).Google Scholar
13. Haraguchi, K., Hiruma, K., Katsuyama, T., Tominaga, K., Shirai, M., and Shimada, T., Appl. Phys. Lett. 69, 386 (1996).Google Scholar
14. Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., Nanotechnology 15, L5 (2004).Google Scholar
15. Lee, J. S., Islam, M. S., and Kim, S., Sens. Actuators B 126, 73 (2007).Google Scholar
16. Conley, J. F., Stecher, L., and Ono, Y., Appl. Phys. Lett. 87, 223114 (2005).Google Scholar
17. Chen, R. S., Wang, S. W., Lan, Z. H., Tsai, J. T. H., Wu, C. T., Chen, L. C., Chen, K. H., Huang, Y. S., and Chen, C. C., Small 4, 925 (2008).Google Scholar
18. Lee, J. S., Islam, M. S., and Kim, S., Nano Lett. 6, 1487 (2006).Google Scholar
19. He, R., Gao, D., Fan, R., Hochbaum, A. I., Carraro, C., Maboudian, R., and Yang, P., Adv. Mater. 17, 2098 (2005).Google Scholar
20. Albert-Polacek, K. and Wassermann, E. F., Thin Solid Films 37, 65 (1976).Google Scholar
21. Shchipalov, Y. K., Glass Ceram. 57, 374 (2000).Google Scholar
22. Kim, D. S., Scholz, R., Gösele, U., and Zacharias, M., Small, 4, 1615 (2008).Google Scholar
23. Park, W. I., Kim, D. H., Jung, S. W., and Yi, G. C., Appl. Phys. Lett. 80, 4232 (2002).Google Scholar
24. Li, Y., Della Valle, F., Simonnet, M., Yamada, I., and Delaunay, J.-J., Nanotechnology 20, 045501 (2009).Google Scholar
25. Li, Y., Della Valle, F., Simonnet, M., Yamada, I., and Delaunay, J.-J., Appl. Phys. Lett. 94, 023110 (2009).Google Scholar