Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T21:08:21.791Z Has data issue: false hasContentIssue false

Fabrication and characterization of solution-processed carbon nanotube supercapacitors

Published online by Cambridge University Press:  10 February 2014

Suvi Lehtimäki
Affiliation:
Tampere University of Technology, Dept. of Electronics and Communications Engineering P.O. Box 692, FI-33101 Tampere, Finland
Juho Pörhönen
Affiliation:
Tampere University of Technology, Dept. of Electronics and Communications Engineering P.O. Box 692, FI-33101 Tampere, Finland
Sampo Tuukkanen
Affiliation:
Tampere University of Technology, Dept. of Electronics and Communications Engineering P.O. Box 692, FI-33101 Tampere, Finland
Pasi Moilanen
Affiliation:
Morphona Ltd. Myllärintie 1, 40640 Jyväskylä, Finland
Jorma Virtanen
Affiliation:
The University of Akron, Dept. of Polymer Engineering 250 South Forge Street, Akron, OH 44325-0301, USA
Donald Lupo
Affiliation:
Tampere University of Technology, Dept. of Electronics and Communications Engineering P.O. Box 692, FI-33101 Tampere, Finland
Get access

Abstract

We report the fabrication and characterization of supercapacitors prepared on a flexible substrate using a printable, high-viscosity carbon nanotube (CNT) ink. The CNT-hemicellulose composite ink was prepared using ultrasonication and applied on the substrate with a doctor blade. Aqueous sodium chloride was used as electrolyte. The capacitance of the supercapacitors was 16 mF for a device size of 2 cm2. The measurements were carried out in accordance to an international standard for electric double layer capacitors.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kötz, R. and Carlen, M., Electrochim. Acta 45, 24832498 (2000).CrossRefGoogle Scholar
Keskinen, J., Sivonen, E., Jussila, S., Bergelin, M., Johansson, M., Vaari, A. and Smolander, M., Electrochim. Acta 85, 302306 (2012).CrossRefGoogle Scholar
Lehtimäki, S., Li, M., Pörhönen, J., Kalanti, A., Tuukkanen, S., Heljo, P., Halonen, K. and Lupo, D. (Submitted).Google Scholar
Somov, A., Ho, C.C, Passerone, R., Evans, J.W. and Wright, P.K., Towards extending sensor node lifetime with printed supercapacitors wireless sensor networks, Picco, G.P. and Heinzelman, W. (Eds.), Proc. EWSN 2012 (Trento, Italy, Feb. 15-17, 2012), pp. 212227.Google Scholar
Simon, P. and Gogotsi, Y., Nat. Mater. 7(11), 845854 (2008).CrossRefGoogle Scholar
Ebringerova, A., Hromadkova, Z. and Heinze, T., Adv. Polym. Sci. 186, 167 (2005).CrossRefGoogle Scholar
Smits, F.M., Bell Syst. Tech. J. 37, 711–18 (1958).CrossRefGoogle Scholar
International standard: Fixed electric double layer capacitors for use in electronic equipment. IEC 62391–1 (2006).Google Scholar
Kaempgen, M., Chan, C.K., Ma, J., Cui, Y. and Gruner, G., Nano Lett. 9, 18721876 (2009).CrossRefGoogle Scholar
Hu, S., Rajamani, R. and Yu, X., Appl. Phys. Lett. 100, 104103–104103 (2012).CrossRefGoogle Scholar
Mathuna, C.O., O’Donnell, T., Martinez-Catala, R.V., Rohan, J. and O’Flynn, B., Talanta 75, 613623 (2008).CrossRefGoogle Scholar