Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T00:11:12.251Z Has data issue: false hasContentIssue false

Equivalent-circuit Modeling of Microcrystalline Silicon pin Solar Cells prepared over a Wide Range of Absorber-layer Compositions

Published online by Cambridge University Press:  01 February 2011

Steve Reynolds
Affiliation:
[email protected], University of Dundee, Dundee, United Kingdom
Vladimir Smirnov
Affiliation:
[email protected], Forschungszentrum Juelich, IEF-5 Photovoltaik, Leo-Brandt str, Juelich, 52428, Germany
Get access

Abstract

An equivalent-circuit electrical model is used to simulate the photovoltaic properties of mixed-phase thin-film silicon solar cells. Microcrystalline and amorphous phases are represented as separate parallel-connected photodiode equivalent circuits, scaled by assuming that the photodiode area is directly proportional to the volume fraction of each phase. A reasonable correspondence between experiment and simulation is obtained for short-circuit current and open-circuit voltage vs. volume fraction. However the large dip in fill-factor and reduced PV efficiency measured for cells prepared in the low-crystalline region is inadequately reproduced. It is concluded that poor PV performance in this region is not due solely to shunting by more highly-crystalline filaments, which supports the view that the low-crystalline material has transport properties inferior to either microcrystalline or amorphous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A, Rech, B. and Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97 (2000).Google Scholar
2 Myong, S., Sriprapha, K., Yashiki, Y., Miyajima, S., Yamada, A. and Konagai, M., Sol. Energy Mater. Sol. Cells 92, 639 (2008).Google Scholar
3 Astakhov, O., Carius, R., Finger, F., Petrusenko, Y., Borysenko, V. and Barankov, D., Phys. Rev. B 79, 104205 (2009).Google Scholar
4 Reynolds, S., Carius, R., Finger, F. and Smirnov, V., Thin Solid Films 517, 6392 (2009).Google Scholar
5 Dylla, T., Reynolds, S., Carius, R. and Finger, F., J. Non-Cryst. Solids 352, 1093 (2006).Google Scholar
6 Mai, Y., Klein, S., Carius, R., Stiebig, H., Geng, X. and Finger, F., Appl. Phys. Lett. 87, 073503 (2005).Google Scholar
7 Reynolds, S., Main, C., Smirnov, V. and Meftah, A., Phys. Stat. Sol. (c) 7, 505 (2010).Google Scholar
8 Yan, B., Yang, J., Yue, G., Lord, K. and Guha, S., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, May 11-18 2003) , Vols. A-C, p. 1627.Google Scholar
9 Yan, B., Jiang, C., Teplin, C., Moutinho, H., Al-Jassim, M., Yang, J. and Guha, S., J. Appl. Phys 101, 033712 (2007).Google Scholar
10 Modelling Photovoltaic Systems using PSpice, Castaner, L. and Silvestre, S. (Wiley, 2002).Google Scholar
11 Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F. and Geng, X., J. Appl. Phys. 97, 114913 (2005).Google Scholar
12 Neto, A. Baia, Lambertz, A., Carius, R. and Finger, F., J. Non-Cryst. Solids 299–302, 274 (2002).Google Scholar
13 Lambertz, A., Finger, F. and Carius, R., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, May 11-18 2003), Vols. A-C, p. 2738.Google Scholar
14 Bailat, J. et al, Proceedings of the 19th EU-PVSEC (Paris, June 2004), p. 1548.Google Scholar