Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:13:15.000Z Has data issue: false hasContentIssue false

Enhanced Photoluminescence from Long Wavelength InAs Quantum Dots Embedded in a Graded (In,Ga)As Quantum Well

Published online by Cambridge University Press:  21 March 2011

L. Chen
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904
V. G. Stoleru
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904
D. Pal
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904
D. Pan
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904
E. Towe
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904
Get access

Abstract

Three sets of self-organized InAs quantum dots (QDs) embedded in an external InGaAs quantum well samples were grown by solid source molecular beam epitaxy (MBE). By modifying Indium composition profile within quantum well (QW) region, it's found the photoluminescence emission from quantum dots can be greatly enhanced when employing a graded quantum well to surround QDs. This quantum dots in a graded quantum well structure also preserves the long wavelength (1.3 μm) spectrum requirement for the future use in optoelectronics devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refenences

[1] Kirkstaedter, N., Ledentsov, N., Grundmann, M., Bimberg, D., Ustinov, V., Ruvimov, S., Maximov, M., Kop'ev, P., and Alferov, Zh., Electron. Lett. 30, 1416 (1994).Google Scholar
[2] Park, G., Shchekin, O.B., Huffaker, D.L., and Deppe, D.G., IEEE Photon. Tech. Lett. 12, 230 (2000).Google Scholar
[3] Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., and Deppe, D.G., Appl. Phys. Lett. 73, 2564 (1998).Google Scholar
[4] Lott, J.A., Ledentsov, N., Ustinov, V., Maleev, N. A., Zhukov, A. E., Kovsh, A. R., Maximov, M. V., Volovik, B. V., Alferov, Zh. I., and Bimberg, D., Electron. Lett. 36, 1384 (2000).Google Scholar
[5] Huffaker, D.L. and Deppe, D.G., Appl. Phys. Lett. 73, 520 (1998).Google Scholar
[6] Murray, R., Childs, D., Malik, S., Siverns, P., Roberts, C., Hartmann, J.M., and Stavrinou, P., Jpn. J. Appl. Phys. 38, 528 (1999).Google Scholar
[7] Nishi, K., Saito, H., and Sugou, S., Appl. Phys. Lett. 74, 1111 (1999).Google Scholar
[8] Stintz, A., Liu, G. T., Li, H., Lester, L. F., and Malloy, K. J., IEEE Photon. Tech. Lett. 12, 591 (2000).Google Scholar
[9] Liu, G. T., Stintz, A., Li, H., Newell, T.C., Gray, A.L., Varangis, P.M., Malloy, K. J., and Lester, L. F., IEEE Journal of Quan. Electron. 36, 1273 (2000).Google Scholar
[10] Hatori, N., Sugawara, M., Mukai, K., Nakata, Y., and Ishikawa, H., Appl. Phys. Lett. 77, 773 (2000).Google Scholar
[11] Wu, Y., Arai, K., and Yao, T., Phys. Rev. B 53, 10485 (1996).Google Scholar
[12] Ru, E. C. Le, Siverns, P. D., and Murray, R., Appl. Phys. Lett. 77, 2446 (2000).Google Scholar
[13] Stoleru, V. G., Pal, D., and Towe, E., Mater. Res. Soc. Proc. Vol.642, J.1.7.16, Boston, MA (2000).Google Scholar
[14] Bahder, T.B., Phys. Rev. B 41, 11992 (1992).Google Scholar
[15] Stier, O., Grundmann, M., and Bimberg, D., Phys. Rev. B 59, 5688 (1999).Google Scholar
[16] Pollak, F. H., Semiconductors and Semimetals, Academic Press, Inc., New York, Volume 32, pp. 17 (1990).Google Scholar
[17] Pikus, G. E. and Bir, G. L., Sov. Phys. Solid State 1, 1502 (1960).Google Scholar