Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T05:16:46.003Z Has data issue: false hasContentIssue false

The Embedded Atom Method: Theory and Application*

Published online by Cambridge University Press:  28 February 2011

M. I. Baskes
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
M. S. Daw
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Get access

Abstract

The Embedded Atom Method (EAM), a modem theory of metallic bonding, has been developed to provide a simple but accurate method of evaluating the energy and forces for an arbitrary arrangement of atoms. The relationships between the EAM and the underlying electron density theory will be discussed. Specific examples of EAM calculations of surface reconstruction for (110) fcc materials will be predicted and compared to experiment. The examples will include temperature effects in gold. The results of molecular dynamics calculations of the mechanical properties of nickel also will be presented. Topics to be discussed include dislocation mobility and dislocation emission from a stressed crack in nickel. The dislocation calculations will be related to continuum modelling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences.

References

1. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984); M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
2. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33 7983 (1986).CrossRefGoogle Scholar
3. Foiles, S. M., Phys. Rev. B 32, 3409 (1985).CrossRefGoogle Scholar
4. Daw, M. S., Surf. Sci. Lett. 166, L161 (1986).Google Scholar
5. Daw, M. S., Baskes, M. I., Bisson, C. L., and Wolfer, W. G., Modeling Environmental Effects on Crack Growth Processes, ed. by Jones, R. H. and Gerberich, W. W., Metallurgical Society of AIME, New York (1986), p. 99.Google Scholar
6. Baskes, M. I., Foiles, S. M., and Melius, C. F., J. Nucl. Mater. 145–147, 399 (1987).Google Scholar
7. Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B 25, 7423 (1987).Google Scholar
8. Manninen, M., Phys. Rev. B 34, 8486 (1986).Google Scholar
9. Kress, J. D. and DePristo, A. E., J. Chem. Phys. (submitted).Google Scholar
10. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
11. Daw, M. S., Phys. Rev. B (in press).Google Scholar
12. Hohenberg, P. and Kohn, W., Phys. Rev. B 136. 864 (1964).Google Scholar
13. Norskov, J. K., Phys. Rev. B 26, 2875 (1982).Google Scholar
14. Chan, C. M. and Hove, M. A. Van, Surf. Sci. 171, 226 (1986), and references therein.CrossRefGoogle Scholar
15. Moritz, W. and Wolf, D., Surf. Sci. 163, L655 (1985).Google Scholar
16. Campuzano, J. C., Jennings, G., and Willis, R. F., Surf. Sci. 162, 484 (1985); E. G. McRae, T. M. Buck, R. A. Malic, and G. H. Wheatley, Phys. Rev. BM, 2341 (1987).Google Scholar
17. Daw, M. S. and Foiles, S. M., Phys. Rev. Lett. 59, 2756 (1987).Google Scholar
18. Foiles, S. M., Surf. Sci. Lett. 191, L779 (1987).Google Scholar
19. Daw, M. S. and Baskes, M. I. in Proceedings of NATO Advanced Study Institute, Bad Reichenhall, West Germany, June 1986, ed. by Latanision, R. A. and Jones, R. H..Google Scholar
20. Theory of Dislocations, Hirth, J. P. and Lothe, J., McGraw-Hill, New York (1968).Google Scholar
21. Kameda, J., Act. Met. 3–4, 2391 (1986).Google Scholar
22. Thomson, R., “Physics of Fracture,” in Atomistics of Fracture, ed. by Latanision, R. M. and Pickens, J. R. (NATO Advanced Study Institute, Corsica, May 1981, Plenum Press).Google Scholar