Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T08:39:18.348Z Has data issue: false hasContentIssue false

Electronic Structure of Long Polyenes: States and Transition Dipoles

Published online by Cambridge University Press:  25 February 2011

Bryan E. Kohler*
Affiliation:
Chemistry Department, University of California, Riverside, CA 92521, U.S.A.
Get access

Abstract

Electronic excitation energies and transition dipoles measured for symmetrically substituted linear polyenes (R-(CH=CH)N-R) with chain lengths n ranging from 2 to 8 are well fit by the functional form A+B/N. Extrapolation to the long chain limit correlates the band gap transition of polyacetylene with the polyene 11Ag to 11Bu transition. The amount by which the highly correlated polyene 21Ag state is lower than the 11Bu state increases with increasing chain length, extrapolating to roughly half of the 11Bu excitation energy. The 11Ag to 11Bu transition dipole magnitude per chain repeat unit attains a maximum value of 3.0 Debye at an effective conjugation length 5 double bonds.

Careful studies on linear polyenes provides insight into the electronic structure of polyacetylene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hudson, B.S., Kohler, Bryan E. and Schulten, K., Excited States 6, 1 (1982).Google Scholar
2. Schulten, K., Ohmine, I. and Karplus, M., J. Chem. Phys. 64, 4422 (1976).CrossRefGoogle Scholar
3. Ohmine, I., Karplus, M. and Schulten, K., J. Chem. Phys. 68 2348 (1978).Google Scholar
4. Kohler, B.E., J. Chem. Phys. 88, 2788 (1988).Google Scholar
5. Kohler, B.E., Spangler, C. and Westerfield, C., J. Chem. Phys. 89, 5422 (1988). Table IV in this paper summarizes information for unsubstituted and alkyl substituted polyenes with 4 through 8 double bonds in conjugation.Google Scholar
6. Granville, M.F., Kohler, B.E. and Snow, J.B., J. Chem. Phys. 75, 3765 (1981).CrossRefGoogle Scholar
7. Granville, M.F., Holtom, G.R. and Kohler, B.E., J. Chem. Phys. 72, 4671 (1980).CrossRefGoogle Scholar
8. Snyder, R., Arridson, E., Foote, C., Harrigan, L. and Christensen, R.L., J. Am. Chem. Soc. 107. 4117 (1985).Google Scholar
9. Anders, J.R. and Hudson, B.S., J. Chem. Phys. 72, 4671 (1980).Google Scholar
10. Christensen, R.L. and Kohler, B.E., J. Chem. Phys. 63, 1837 (1975).CrossRefGoogle Scholar
11. Simpson, J.H., McLaughlin, L., Smith, D.S. and Christensen, R.L., J. Chem. Phys. 87, 3360 (1987).Google Scholar
12. Kohler, B.E., Spangler, C. and Westerfield, C., J. Chem. Phys. 89, 5422 (1988).Google Scholar
13. Heatherington, W.M. III, Thesis, Stanford University, Stanford, CA (1977).Google Scholar
14. As measured in this laboratory by C. Westerfield.Google Scholar
15. Horwitz, J.S., Itoh, T., Kohler, B.E. and Spangler, C.W., J. Chem. Phys. 87, 2433 (1987).Google Scholar
16. Bredas, J.L., Silbey, R., Doudreaux, D.S. and Chance, R.R., J. Am. Chem. Soc. 105. 6555 (1983).Google Scholar
17. Hudson, B.S. and Kohler, B.E., J. Chem. Phys. 59, 4984 (1973).CrossRefGoogle Scholar
18. Diamond, J., Thesis, Stanford University, Stanford, CA (1978).Google Scholar
19. Sklar, L.A., Hudson, B.S., Petersen, M. and Diamond, J., Biochem. 16, 813 (1977).Google Scholar
20. Baughman, R.H., Kohler, B.E., Levy, I.J. and Spangler, C., Synthetic Metals 1l, 37 (1985).Google Scholar
21. Bachilo, S.M. and Bondarev, S.L., Opt. Spectrosc. (USSR) 65, 177 (1988).Google Scholar
22. Kohler, B.E. and Pescatore, J.A. Jr., Proc. Mons NATO Advanced Research Workshop, in press.Google Scholar
23. Pierce, B.M., J. Chem. Phys. 91, 791 (1989).Google Scholar
24. Amos, A.J. and Burrows, B.L., Advan. Quantum. Chem. 7, 303 (1973).Google Scholar