Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:57:37.922Z Has data issue: false hasContentIssue false

Electronic structure of Cd, In, Sn substitutional Defects in GaSe

Published online by Cambridge University Press:  01 February 2011

Zsolt Rak
Affiliation:
[email protected], Michigan State University, Physics and Astronomy, East Lansing, MI, 48824, United States
Subhendra D Mahanti
Affiliation:
[email protected], Michigan State University, Physics and Astronomy, East Lansing, MI, 48824, United States
Krishna C Mandal
Affiliation:
[email protected], EIC Laboratories, Inc, 111 Downey Street, Norwood, MA, 02062, United States
Nils C Fernelius
Affiliation:
[email protected], Wright-Patterson Air Force Base, AFRL/MLPSO, Dayton, OH, 45433, United States
Get access

Abstract

Ab initio electronic structure calculations within density functional theory have been carried out in pure GaSe and GaSe doped with substitutional impurities (Cd, In and Sn) at the Ga site in order to understand the nature of the defect states and how they depend on the nominal valence of these three impurities. We find that Cd impurity introduces a defect state located between 0.1 – 0.18 eV above the valence band, in good agreement with photoluminescence peaks seen at 0.13 eV and 0.18 eV. Using both experimental and theoretical effective mass parameters we show that effective mass model fails to describe these acceptor states. Sn changes the single particle density of states (DOS) near the bottom of the conduction band, and gives rise to resonant states deep in the valence band. In, on the other hand, behaves like Ga, it does not make noticeable change in the DOS of the host GaSe crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitriev, V. G., Gurzadyhan, G. G., and Nikogosyan, D. N., Handbook of Nonlinear Optical Crystals(Springer, New York, 1999), p.166.Google Scholar
2. Liu, K., Xu, J., and Zhang, X.-C., Appl. Phys. Lett. 85 (6), 863 (2004)Google Scholar
3. Liu, K., Xu, J., and Zhang, X.-C., Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, pp. 333334 (2004)Google Scholar
4. Shi, W. et al, Appl. Phys. Lett. 80 (21) 38893891 (2002); Optics Lett. 27 (16) 1454-6 (2002); Appl. Phys. Lett. 84 (10) 1635-7 (2003)Google Scholar
5. Yu, B. L., Zeng, F., Kartazayev, V., Alfano, R. R. and Mandal, Krishna C., Appl. Phys. Lett. 87 182104 (2005)Google Scholar
6. Manfredotti, C., Murri, R. and Vasanelli, L., Nucl. Instr. and Meth. 115 (2), 349 (1974)Google Scholar
7. Manfredotti, C., Murri, R., Quirini, A. and Vasanelli, L., Nucl. Instr. and Meth. 131(3), 457 (1975)Google Scholar
8. Mancini, A. M., Manfredotti, C., Murri, R., Rizzo, A., Quirini, A. and Vasanelli, L., IEEE Trans. Nucl. Sci. 23 (1), 189 (1976)Google Scholar
9. Sakai, E., Nakatani, H., Tatsuyama, C. and Takeda, F., IEEE Trans. Nucl. Sci. 35(1), 85 (1988)Google Scholar
10. Nakatani, H., Sakai, E., Tatsuyama, C. and Takeda, F., Nucl. Instr. and Meth. A 283(2), 303 (1989)Google Scholar
11. Yamazaki, T., Nakatani, H. and Ikeda, N., Jpn. J.Appl. Phys. 32 (4), 1857 (1993)Google Scholar
12. Yamazaki, T., Terayama, K., Shimazaki, T. and Nakatani, H., Jpn. J. Appl. Phys. 36(1A), 378 (1997)Google Scholar
13. Fivaz, R. and Mooser, R., Phys. Rev. 163 (3), 743 (1967)Google Scholar
14. Fan, Y., Bauer, M., Kador, L., Allakhverdiev, K. R. and Salaev, E. Yu., J. Appl. Phys. 91, 1081 (2002)Google Scholar
15. Shigetomi, S., Ikari, T. and Nishimura, H., J. Appl. Phys. 69(11), 7936 (1991)Google Scholar
16. Micocci, G., Serra, A., and Tepore, A., J. Appl. Phys. 82 (5), 2365 (1997)Google Scholar
17. Shigetomi, S., Ikari, T., and Nakashima, H., Phys. Stat. Sol. A 160 (1), 159 (1997); S. Shigetomi, T. Ikari, and H. Nakashima, Jpn. J. Appl. Phys 35 (8), 4291 (1996)Google Scholar
18. Capozzi, V. and Minafra, A., J. Phys. C. 14 (29), 4335 (1981)Google Scholar
19. Shigetomi, S. and Ikari, T., J. Appl. Phys. 95 (11), 6480 (2004)Google Scholar
20. Sanchez-Royo, J. F., Errandonea, D., Segura, A., Roa, L., and Chevy, A., J. Appl. Phys. 83, 4750 (1998) and references thereinGoogle Scholar
21. Shure, D. H., Singh, N. B., Balakrishna, V., Fernelius, N. C. and Hopkins, F. K., Optics Lett. 22(11), 775–7 (1997); V. G. Voevodin, O. V. Voevodina, S. A. Bereznaya, Z. V. Korotchenko, A. N. Morozov, S. Yu. Sarkisov, N. C. Fernelius and J. T. Goldstein, Optical Materials 26(9), 495-9 (2004)Google Scholar
22. Pantelides, S. T., Rev. Mod. Phys. 50, 797 (1978)Google Scholar
23. Ahmad, S., Hoang, K., and Mahanti, S. D., Phys. Rev. Lett. 96, 056403 (2006)Google Scholar
24. Ahmad, S., Hoang, K., Mahanti, S. D., and Kanatzidis, M. G., Phys. Rev. B (accepted)Google Scholar
25. D, M. O.. Camara, A. Mauger and Devos, I., Phys. Rev. B 65, 125206 (2002)Google Scholar
26. Boer, Karl W., Survey of Semiconductor Physics, 2nd Edition, Vol. I: Electrons and Other Particles in Semiconductors, p. 765 Google Scholar
27. Faulkner, R. A., Phys. Rev. 184, 713 (1969)Google Scholar
28. Madelung, O., Semiconductors: Data Handbook, 3rd edition, Springer, p. 523526 Google Scholar
29. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW method (Boston: Kluwer Academic) (1994)Google Scholar
30. Blaha, P. et al., WIEN2K, An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Techn. Universitat Wien, Austria (2001)Google Scholar
31. P., Perdew J., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar