Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T08:30:39.207Z Has data issue: false hasContentIssue false

Electron beam Annealing of Shallow BF2 Implantations

Published online by Cambridge University Press:  22 February 2011

C. Jaussaud
Affiliation:
L.E.T.I. - Commissariat A L'Energie Atomique 85 X, 38041 Grenoble Cedex, France
A.M. Cartier
Affiliation:
L.E.T.I. - Commissariat A L'Energie Atomique 85 X, 38041 Grenoble Cedex, France
J. Escaron
Affiliation:
L.E.T.I. - Commissariat A L'Energie Atomique 85 X, 38041 Grenoble Cedex, France
Get access

Abstract

A multiple scan electron beam system has been used to anneal silicon implanted with BF2 (25 Kev, 1, 2 and 5 × 1015 ions × cm−2 ). The annealing temperatures range from 1000 to 1200° C and the annealing times from 3 to 18 seconds. The curves of sheet resistance as a function of annealing time show a minimum. The increase in sheet resistance at longer annealing times is due to boron outdiffusion. Junction depths have been measured by spreading resistance and are presented. For implanted doses below 2 × 1015 ions × cm−2 boron outdiffusion limits the sheet resistance value at about 100 R Ωand this minimum value corresponds to an increase in junction depths of about 500 Å. For implanted doses of 5 × 1015 ions ×cm−2, 60 Ω sheet resistance can be obtained, but with about 1000 Å increase in junction depth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benton, J.L., Celler, G.K., Jacobson, D.C., Kimerling, L.C., Lischner, D.J., Miller, G.L., Robinson, Mc D., Mat. Res. Soc. Symp. Proc. 4, 765770 (1982)Google Scholar
2.Gat, A., IEEE Electron Devices Lett. edl 2 (4) 85 (1981)Google Scholar
3.Wilson, S.R., Gregory, R.B. and Paulson, W. M., Appl. Phys. Lett., vol. 41, n° 10, 978980 (1982)Google Scholar
4.Hodgson, R.T., Baglin, J.E.E., Michel, A.E., Mader, S. and Gelpey, J.C.Mat. Res. Soc. Symp. Proc. 13 , 355360 (1983)Google Scholar
5.Powell, R.A., Yep, T.O. and Fulks, R.T., App. Phys. Lett. 39 (2) 150152 (1981)Google Scholar
6.Fulks, R.T.; Russo, C.J., Hanley, P.R. and Kamins, T.I.App. Phys. Lett. 39 (8) 604606 (1981)Google Scholar
7.Downey, D.F., Russo, C.J., White, J.T. Solid State Technology p 87–93 sept. 82Google Scholar
8.Iwamatsu, S., Kato, J., Nakazaki, Y., Hiramoto, T., Arai, T. and Igarashi, R. Electro. Chem. Soc. Fall meeting 82 - Abstr. n° 216Google Scholar
9.Rensch, D.B. and Chen, J. Y. Electro Chem. Soc. Fall meeting 82 - Abstract n° 158Google Scholar
10.Smith, H.J., Ligeon, E. and Bontemps, A.App. Phys. Lett. 37 (11) p 10361980Google Scholar