Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:48:41.369Z Has data issue: false hasContentIssue false

Electron and Hole Transport Perpendicular to the Planes of a-Si:H/ a-Si, Ge:H Compositional Superlattices

Published online by Cambridge University Press:  28 February 2011

J. Kolodzey
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
S. Aljishi
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
R. Schwarz
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
D.-S. Shen
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
S. Quinlan
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
S. A. Lyon
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544.
Get access

Abstract

Drift mobilities, drift mobility-lifetime products and minority carrier diffusion lengths perpendicular to the planes of a-Si:H, F/a-Si0.35,Ge0.65:H, F superlattices have been measured over a range of well sublayer widths. The transport data suggest a transition from scattering dominated transport in states at the top of the barriers for short superlattice periods to recombination dominated transport at the bottom of the wells for large periods. The characteristic period for this transition is ˜3 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

a) Eastman Kodak Graduate FellowGoogle Scholar
1. Abeles, B. and Tiedje, T., Phys. Rev. Lett., vol.51, p. 2003, 1983.Google Scholar
2. Munekata, H. and Kukimoto, H., Japan. J. Appl. Phys., vol.22, p. L544, 1983.Google Scholar
3. Hirose, M. and Miyazaki, S., J. Non-Cryst. Solids, vol.66, p. 327, 1984.CrossRefGoogle Scholar
4. Hundhausen, M., Ley, L. and Carius, R., Phys. Rev. Lett., vol.53, p. 1598, 1984.Google Scholar
5. Kakalios, J. and Fritzsche, H., Phys. Rev. Lett., vol.53, p. 1602, 1984.Google Scholar
6. Tiedje, T., Abeles, B. and Brooks, B.G., Phys. Rev. Lett., vol. 54, p. 2545, 1985.Google Scholar
7. Roxlo, C.B., Abeles, B. and Persans, P.D., Appl. Phys. Lett., vol. 45, p. 1132, 1984.CrossRefGoogle Scholar
8. Tiedje, T., Wronski, C.R., Persans, P. and Abeles, B., J. Non-Cryst. Solids, vol. 77&78, p. 1031, 1985.Google Scholar
9. Wagner, S., Japan. J. Appl. Phys., vol.24, p. L155, 1985.Google Scholar
10. Kolodzey, J., Aljishi, S., Schwarz, R. and Wagner, S., Electrochemical Society Spring Meeting, Toronto, Abstract No. 176, May 12–17, 1985.Google Scholar
11. Kolodzey, J., Aljishi, S., Schwarz, R. and Wagner, S., submitted to J. Vac. Sci. Technol.Google Scholar
12. Tauc, J., in Optical Properties of Solids, ed. Abeles, F., p. 279, North-Holland, New York, 1972.Google Scholar
13. Persans, P.D., Abeles, B., Scanlon, J. and Stasiewski, H., Proc. 17th Int. Conf. Phys. Semi., p. 499, 1985.CrossRefGoogle Scholar
14. Tiedje, T., Wronski, C.R., Abeles, B. and Cebulka, J. M., Solar Cells, vol.2, p. 301, 1980.Google Scholar
15. Street, R.A., Phys. Rev. B, vol.27, p. 4924, 1983.CrossRefGoogle Scholar
16. Scher, H. and Montroll, E.W., Phys. Rev. B, vol.12, p. 2245, 1975.Google Scholar
17. Dresner, J., Szostak, D.J. and Goldstein, B., Appl. Phys. Lett., vol.38, p. 998, 1981.Google Scholar
18. Moore, A., J. Appl. Phys., vol.54, p. 222, 1983.Google Scholar
19. Schwarz, R., Slobodin, D., and Wagner, S., Appl. Phys. Lett., vol.47, p. 740, 1985.Google Scholar
20. Kolodzey, J., Slobodin, D., Aljishi, S., Quinlan, S., Schwarz, R., Shen, D.-S., Fauchet, P.M. and Wagner, S., J. Non-Cryst. Solids, vol.77&78, p. 897, 1985.Google Scholar
21. Spear, W.E., J. Non-Cryst. Solids, vol.1, p. 197, 1969.Google Scholar
22. Moore, A., “Hydrogenated Amorphous Silicon,” in Semiconductors and Semimetals, volumes 21C, ed. Pankove, J.I., p. 239, Academic Press, New York, 1984.Google Scholar