Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:27:37.062Z Has data issue: false hasContentIssue false

Electrical and Magnetic Properties of Doped ZnO Nanowires

Published online by Cambridge University Press:  01 February 2011

Gennady N Panin
Affiliation:
[email protected], QSRC, Dongguk University, Physics, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Korea, Republic of, 82-02-22603950
Andrey N. Baranov
Affiliation:
[email protected], Moscow State University, Department of Chemistry, Moscow, 119992, Russian Federation
Tae Won Kang
Affiliation:
[email protected], Dongguk University, QSRC, Department of Physics, 3-26 Pil-dong, Chung-gu, Seoul, 100-715, Korea, Republic of
Oleg V. Kononenko
Affiliation:
[email protected], Inst. of Microelectronics Technology, RAS, Chernogolovka, Moscow distr., 142432, Russian Federation
Sergey V. Dubonos
Affiliation:
[email protected], Inst. of Microelectronics Technology, RAS, Chernogolovka, Moscow distr., 142432, Russian Federation
S. K. Min
Affiliation:
[email protected], Dongguk University, Department of Semiconductors, Seoul, 100-715, Korea, Republic of
H. J. Kim
Affiliation:
[email protected], Dongguk University, Department of Semiconductors, Seoul, 100-715, Korea, Republic of
Get access

Abstract

ZnO nanowires doped with Mn, Fe, Sn, and Li during the thermal growth following direct chemical synthesis were investigated using electric and magnetic measurements. Current-voltage characteristics of individual nanowires configured as a two-terminal device with Al electrodes show apparent rectify behavior indicating the Schottky-like barrier formation and resistivity being less 3 Ω·cm. Reproducible resistance modulation by a dc voltage at room temperature is observed. Magnetic susceptibility of the doped nanowires as a function of temperature demonstrates Curie–Weiss behavior. Magnetization versus field curves show hysteresis with the coercive field of about 200 Oe. The spatially-resolved magnetic force measurements of individual nanowires revealed the magnetic domain structure. The domains align perpendicular to c-axis and can be polarized in the external magnetic field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Progr. in Mat. Science, 50, 293 (2005).Google Scholar
2. Lawes, G., Risbud, A. S., Ramirez, A. P., and Seshadri, R., Phys. Rev. B 71, 045201 (2005).Google Scholar
3. Risbud, A. S., Spaldin, N. A., Chen, Z. Q., et al. Phys. Rev. B 68, 205202 (2003).Google Scholar
4. Ueda, K., Tabata, H., and Kawai, T., Appl. Phys. Lett. 79, 988 (2001).Google Scholar
5. Kundaliya, D.C., Ogale, S.B., Lofland, S.E., Dhar, S., et al. Nature Mater., 3, 709 (2004).Google Scholar
6. Sharma, P. et al., Nat. Mater. 2, 673 (2003).Google Scholar
7. Kittilstved, K. R., Norberg, N. S., and Gamelin, D. R., PRL, 94, 147209 (2005).Google Scholar
8. Macdonald, A. H., Schiffer, P., and Samarth, N., Nature Mater., 4, 195 (2005).Google Scholar
9. Wu, P., Saraf, G., Lu, Y. et al., Appl. Phys. Lett., 89, 012508 (2006).Google Scholar
10. Spaldin, N. A., Phys. Rev. B 69, 125201 (2004).Google Scholar
11. Ronning, C., Gao, P.X., Ding, Y., et al. Appl. Phys. Lett., 84, 783 (2004).Google Scholar
12. Wu, J.J., Liu, S. C., and Yang, M.H., Appl. Phys. Lett., 85, 1027 (2004).Google Scholar
13. Baranov, A.N., Panin, G.N. Kang, T.W. and Oh, Y.-J., Nanotechnology 16, 1918 (2005).Google Scholar
14. Wang, X.R. and Niu, Q., Phys. Rev. B 59, R12755 (1999).Google Scholar
15. Panin, G.N., Kang, T.W., Aleshin, A. N., Baranov, A. N., Oh, Y.-J., Khotina, I. A., Appl. Phys. Lett. 86, 113114 (2005).Google Scholar
16. Panin, G. N., Baranov, A. N. et al, Proc. 28th Int. Conf. Phys. Semicond., Vienna, Austria, p. 340, 2006.Google Scholar
17. Kundaliya, D.C., Ogale, S. B. et al Nature Materials, 3, 709 (2004).Google Scholar