Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T08:37:58.825Z Has data issue: false hasContentIssue false

Effectiveness of Plasma Nitrided Silicon Oxynitride as a Barrier Layer between High k Materials and Si Substrates

Published online by Cambridge University Press:  11 February 2011

Yi-Sheng Lai
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, TAIWAN
J. S. Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, TAIWAN
Get access

Abstract

In this work, low temperature (300 – 450°C) plasma nitridation was conducted using N2O and NH3 atmosphere to produce an ultrathin SiOxNy layer. The bonding structure, distribution, and quantity of nitrogen and their effects on the growth kinetic of SiOxNy layers are studied by X-ray photoelectron spectroscopy (XPS). It is found that nitrogen atoms pile at the SiOxNy/Si interface at the very beginning of plasma N2O and NH3 nitridation. Due to the lack of additional Si source and low diffusivity of O or N atoms at low temperature, plasma nitridation will form a self-limited growth of SiOxNy layer. Thermal stability of the interlayer between ultrathin Ta2O5 films on bare Si, plasma N2O nitrided Si, and plasma NH3 nitrided Si is also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gutowski, M., Jaffe, J. E., Liu, C.-L., Stoker, M., Hegde, R. I., Rai, R. S., and Tobin, P. J., Appl. Phys. Lett. 80, 1897(2002).Google Scholar
2. Park, K., Park, J., Cho, M., Huang, C. S., Oh, K., Han, Y., and Yang, D. Y., Appl. Phys. Lett. 80, 2368 (2002).Google Scholar
3. Yamaguchi, T., Satake, H., Fukushima, N., and Toriumi, A., Appl. Phys. Lett. 80, 1987 (2002).Google Scholar
4. Hendrix, B. C., Borovik, A. S., Xu, C., Roeder, J. F., Baum, T. H., Bevan, M. J., Visokay, M. R., Chambers, J. J., Rotondaro, A. L. P., Bu, H., and Colombo, L., Appl. Phys. Lett. 80, 2362 (2002).Google Scholar
5. Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L., J. Appl. Phys. 90, 2057 (2001).Google Scholar
6. Baumvol, I. J. R., Surf. Sci. Rep. 36, 1 (1999), and references therein.Google Scholar
7. Cova, P., Masut, R. A., Grenier, O., and Poulin, S., J. Appl. Phys. 92, 129 (2002).Google Scholar
8. Lai, Y-S., Chen, K.-J., and Chen, J. S., J. Appl. Phys. 91, 6428 (2002).Google Scholar
9. Rignanese, G-M. and Pasquarello, A., Phys. Rev. B 63, 075307 (2001).Google Scholar
10. Hegde, R. I., Tobin, P. J., Reid, K. G., Maiti, B., and Ajuria, S. A., Appl. Phys. Lett. 66, 2882 (1995).Google Scholar
11. Ellis, K. A. and Buhrman, R. A., IBM J. Res. Develop. 43, 287 (1999).Google Scholar
12. Steen, M. L., Kull, K. R., and Fisher, E. R., J. Appl. Phys. 92, 55 (2002).Google Scholar