Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T08:32:20.075Z Has data issue: false hasContentIssue false

Effect of Thickness Variation in High-Efficiency Ingan/Gan Light Emitting Diodes

Published online by Cambridge University Press:  11 February 2011

J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
H. Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Jinlin Ye
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
Schang-Jing Hon
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
Kenneth Fox
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
Jyh Chia Chen
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
H. K. Choi
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
John C.C. Fan
Affiliation:
Kopin Corporation, 695 Myles Standish Blvd. Taunton, MA 02780
Get access

Abstract

We have found that InxGa(1-x)N/GaN multi-quantum-well (MQW) light emitting diodes (LEDs) having periodic thickness variation (TV) in InxGa(1-x)N active layers exhibit substantially higher optical efficiency than LEDs with uniform InxGa(1-x)N layers. In these nano-structured LEDs, the thickness variation of the active layers is shown to be more important than In composition fluctuation in quantum confinement of excitons (carriers). Detailed STEM-Z contrast analysis, where image contrast is proportional to Z2 (atomic number)2, was carried out to investigate the thickness variation as well as the spatial distribution of In. In the nanostructured LEDs, there are short-range (SR-TV, 3 to 4 nm) and long-range thickness variations (LR-TV, 50 to 100 nm) in InxGa(1-x)N layers. It is envisaged that LR-TV is the key to quantum confinement of the carriers and enhancing the optical efficiency. We propose that the LR-TV thickness variation is caused by two-dimensional strain in the InxGa(1-x)N layer below its critical thickness. The SR-TV may be caused by In composition fluctuation. The observations on thickness variation are in good agreement with model calculations based upon strain effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
2. GaN and Related Alloys- 1998 MRS Proceedings Volume 537, ed by S. J. Pearton, C. P. Kao, A. F. Wright, and T. Uenoyama (MRS Internet J. Nitride Semi Res, 4S1, 1999).Google Scholar
3. Nakamura, S., Science 281, 956 (1998).Google Scholar
4. Jain, S.C., Willander, M., Narayan, J., Van Overstraeten, R., J. Appl. Phys. 87, 965 (2000).Google Scholar
5. Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, ed. Nakamura, S., Chichibu, S. F., Taylor and Fancis, New York (2000).Google Scholar
6. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
7. Narukawa, Y., Kawakami, Y., Fujita, S., and Nakamura, S., Phys Rev B 59, 10283 (1999).Google Scholar
8. Singh, R., Doppalapudi, D., Moustakas, T. D., and Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
9. Naranjo, F. B., Sanchez-Garcia, M. A., Calle, F., and Calleja, E., Appl. Phys. Lett. 80, 231 (2002).Google Scholar
10. El-Masry, N. A., Piner, E. L., Liu, S. X., and Bedair, S. M., Appl. Phys. Lett. 72, 40 (1998).Google Scholar
11. Hirayama, H., Tanaka, S., Ramvall, P., and Aoyagi, Y., Appl. Phys. Lett. 72, 1736 (1998).Google Scholar
12. Zhang, J., Hao, M., Li, P., and Chua, S. J., Appl. Phys. Lett. 80, 485 (2002).Google Scholar
13. McCluskey, M. D., Romano, L. T., Krusor, B. S., Bour, D. P., Johnson, N. M., and Brennan, S., Appl. Phys. Lett. 72, 1730 (1998).Google Scholar
14. Romano, L. T., McCluskey, M. D., Van de Walle, C. G., Northrup, J. E., Bour, D. P., Kneissi, M., Suski, T., and Jun, J., Appl. Phys. Lett. 75, 3950 (1999).Google Scholar
15. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
16. Lin, Y-S., Ma, K-J., Hsu, C., Feng, S-W., Cheng, Y-C., Appl. Phys. Lett. 77, 2988 (2000).Google Scholar
17. Pennycook, S. J. and Narayan, J., Phys. Rev. Lett. 54, 1543 (1985).Google Scholar
18. Pennycook, S. J. and Jesson, D. E., Ultramicroscopy 37, 14 (1991).Google Scholar
19. Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
20. Oktyabrsky, S., Wu, H., Vispute, R. D., and Narayan, J., Phil. Mag. A71, 537 (1995).Google Scholar
21. Jesson, D. E., Chen, K. M., Pennycook, S. J., Thundat, T. and Warmack, R. J., Phys. Rev. Lett 77, 1330 (1996).Google Scholar
22. Asaro, R. J. and Tiller, W. A., Metall. Trans. 3, 1789 (1972).Google Scholar
23. Lee, J. K., Int. Mater. Rev. 43, 221 (1997).Google Scholar
24. Kobayashi, N. P., Ramchandran, T. R., Chen, P., and Madhukar, A., Appl. Phys Lett. 68, 3299 (1996).Google Scholar