Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:14:02.229Z Has data issue: false hasContentIssue false

Effect of Growth Conditions on Defect-related Photoluminescence in ZnO Thin Films Grown by Plasma Assisted MBE

Published online by Cambridge University Press:  01 February 2011

Vitaliy Avrutin
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States, (804) 827 7000 ext. 357, (804) 828 4269
Mikhail A. Reshchikov
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Natalia Izyumskaya
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Ryoko Shimada
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Hadis Morkoç
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Get access

Abstract

The effect of growth conditions on the luminescence properties of ZnO films grown on a-Al2O3/GaN(0001)/c-Al2O3 templates by plasma-assisted molecular beam epitaxy has been investigated. We observed that the deflecting of the ions produced by the RF oxygen plasma away from substrate results in improved excitonic emission and modification of the defect-related PL spectrum. The intensity of the near-band-edge lines in photoluminescence spectra from the layers grown with the ion deflector deflection was found to increase as compared to the controls grown without the ion deflector. The yellow-green spectral range was dominated by different defect bands in the films grown with and without ion deflection. The effect of RF power on peak positions of the defect band was studied for the films grown without ion deflection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Li, L.H., Pan, Z., Zhang, W., Lin, Y.W., Wang, X.Y., Wu, R.H., and Ge, W.K., J. Cryst. Growth 223, 140, (2001).Google Scholar
3. Utsumi, A., Furukawa, Y., Yonezu, H., Yoshizumi, Y., Morita, Y., and Wakahara, A., Phys. Stat. Sol. A 202, 758 (2005).10.1002/pssa.200461529Google Scholar
4. Kucheyev, S.O., Jagadish, C., Williams, J.S., Deenapanray, P.N.K., Yano, M., Koike, K., Sasa, S., Inoue, M., and Ogata, K., J. Appl. Phys. 93, 2972 (2003).10.1063/1.1542939Google Scholar
5. Hong, S.K., Hanada, T., Ko, H.J., Chen, Y.F., Yap, T., Imai, D., Araki, K., Shinohara, M., Saitoh, K., and Terauchi, , Phys. Rev. B 65, 115331 (2002).Google Scholar
6. Kato, H., Sano, M., Miyamoto, K., and Yao, , Jap. J. Appl. Phys. Pt. 1 42, 2241 (2003).Google Scholar
7. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., J. Christen, Hoffmann, A., Strassburg, M., Dworzak, M., Haboeck, U., Rodina, A.V., Phys. Stat. Sol. B 241, 231 (2004)10.1002/pssb.200301962Google Scholar
8. Reshchikov, M. A., Xie, J., Hertog, B., and Osinsky, A., Submitted to J. Appl. Phys.Google Scholar
9. Reshchikov, M. A., Avrutin, V., Izyumskaya, N., Shimada, R., and Morkoç, H., Physica B 401–402, 374 (2007).10.1016/j.physb.2007.08.191Google Scholar