Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T07:32:31.700Z Has data issue: false hasContentIssue false

Divacancy-Hydrogen Complexes in Zinc Oxide

Published online by Cambridge University Press:  31 January 2011

Jan Kuriplach
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Gerhard Brauer
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institut für Strahlenphysik, Dresden, Germany
Oksana Melikhova
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Jakub Cizek
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Ivan Prochazka
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Wolfgang Anwand
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institut für Strahlenphysik, Dresden, Germany
Get access

Abstract

In the present work we study Zn+O divacancies filled up with varying amount of hydrogen atoms. Besides the structure and energy-related properties of such defects, we also investigate their capability to trap positrons taking into account positron induced forces. We show that the Zn+O divacancy may trap positrons when up to two hydrogen atoms are located inside the divacancy. The calculated properties are discussed in the context of other computational and experimental studies of ZnO.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Walle, C. G. Van de, Phys. Rev. Lett. 85, 1012 (2000).10.1103/PhysRevLett.85.1012Google Scholar
2 Janotti, A. and Walle, C. G. Van de, Rep. Prog. Phys. 72, 126501 (2009).10.1088/0034-4885/72/12/126501Google Scholar
3 Brauer, G., Anwand, W., Grambole, D., Grenzer, J., Skorupa, W., Cizek, J., Kuriplach, J., Prochazka, I., Ling, C. C., So, C. K., Schulz, D., and Klimm, D., Phys. Rev. B 79, 115212 (2009).10.1103/PhysRevB.79.115212Google Scholar
4 Janotti, A. and Walle, C. G. Van de, Nature Mater. 6, 44 (2007).10.1038/nmat1795Google Scholar
5 Brauer, G., Anwand, W., Skorupa, W., Kuriplach, J., Melikhova, O., Moisson, C., Wenckstern, H. von, Schmidt, H., Lorenz, M., and Grundmann, M., Phys. Rev. B 74, 045208 (2006).10.1103/PhysRevB.74.045208Google Scholar
6 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993), ibid. 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.47.558Google Scholar
7 Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, 8245 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).Google Scholar
8 Kohan, A. F., Ceder, G., Morgan, D., and Walle, C. G. Van de, Phys. Rev. B 61, 15019 (2000).10.1103/PhysRevB.61.15019Google Scholar
9 Janotti, A. and Walle, C. G. Van de, Phys. Rev. B. 76, 165202 (2007).10.1103/PhysRevB.76.165202Google Scholar
10 Puska, M. J. and Nieminen, R. M., J. Phys. F: Met. Phys. 13, 333 (1983); A. P. Seitsonen, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 51, 14057 (1995).10.1088/0305-4608/13/2/009Google Scholar
11 Makkonen, I., Hakala, M., and Puska, M. J., Phys. Rev. B 73, 035103 (2006).10.1103/PhysRevB.73.035103Google Scholar
12 Puska, M. J. and Nieminen, R. M., Rev. Mod. Phys. 66, 841 (1994).10.1103/RevModPhys.66.841Google Scholar
13 Boroński, E. and Nieminen, R. M., Phys. Rev. B 34, 3820 (1986).10.1103/PhysRevB.34.3820Google Scholar
14 Puska, M. J., Mäkinen, S., Manninen, M., and Nieminen, R. M., Phys. Rev. B 39, 7666 (1989).10.1103/PhysRevB.39.7666Google Scholar