Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T05:07:58.577Z Has data issue: false hasContentIssue false

Dislocations as Growth Step Sources in Solution Growth and Their Influence on Interface Structures

Published online by Cambridge University Press:  15 February 2011

E. Bauser
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000Stuttgart 80(F.R.G.)
H. Strunk
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Physik, Heisenbergstrasse 1, D-7000 Stuttgart 80 (F.R.G.)
Get access

Extract

High voltage electron microscopy of silicon and GaAs layers grown by liquid phase epitaxy shows that two types of growth step sources are present. These consist of single dislocations with or without a Burgers vector component parallel to the macroscopic growth direction (longitudinal or transverse step sources respectively). A simple model is used to illustrate in particular the efficient nucleation of growth steps at transverse sources. Suitably positioned dislocations create morphologically stable patterns of equidistant widely spaced surface steps with monatomic height on otherwise atomically flat surfaces. Such growth surfaces result in interfaces with minimum disorder in multilayer growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Esaki, L., Proc. 6th Int. Vacuum Congr., Kyoto, 1974, in Jpn. J. Appl. Phys., Suppl. 2, Part 1 (1974).Google Scholar
2 Frank, F. C., Discuss. Faraday Soc., 5 (1949) 48.Google Scholar
3 Burton, W. K., Cabrera, N. and Frank, F. C., Philos. Trans. R. Soc. London, Ser. A, 243 (1951) 299.Google Scholar
4 Bauser, E. and Strunk, H., J. Cryst. Growth, 51 (1981) 362.Google Scholar
5 Nelson, N., RCA Rev., 24 (1963) 503.Google Scholar
6 Bauser, E., Frik, M., Löchner, K. S., Schmidt, L. and Ulrich, R., J. Cryst. Growth, 27 (1974) 148.Google Scholar
7 Linnebach, R. and Bauser, E., J. Cryst. Growth, 57 (1982) 43.Google Scholar
8 Bauser, E. and Löchner, K. S., J. Cryst. Growth, 55 (1981) 457., and references cited therein.CrossRefGoogle Scholar
9 Kolbesen, B. O., Mayer, K. R. and Schuh, G. E., J. Phys. E, 8 (1975) 197.Google Scholar
10 Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystals, Krieger, New York, 1977.Google Scholar
11 Chernov, A. A., Lecture Notes L-5, 2nd Int. Spring School on Crystal Growth (ISSCG2), Japan, 1974.Google Scholar
12 Käss, D. and Strunk, H., Thin Solid Films, 81 (1981) L101.Google Scholar
13 Mutaftschiev, B., in Nabarro, F. R. N. (ed.), Dislocations in Solids, Vol. 5, North-Holland, Amsterdam, 1980, p. 57.Google Scholar
14 DeKock, A. J. R., Curr. Top. Mater. Sci., 2 (1977) 661.Google Scholar
15 Bauser, E. and Rozgonyi, G. A., Appl. Phys. Lett., 37 (1980) 1001.Google Scholar
16 Bethge, H., Phys. Status Solidi, 2 (1962) 775.Google Scholar
17 Keller, K. W., Lecture Notes L-23, 2ndlnt. Spring School on Crystal Growth (ISSCG2), Japan, 1974.Google Scholar
18 Frank, F. C., J. Cryst. Growth, 51 (1981) 367.Google Scholar