No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The Peierls-Nabarro theory of crystal dislocations is applied to estimate the critical thickness of a strained layer bonded to a substrate for a given mismatch strain. Previous analyses were based on the continuum theory of elastic dislocations, and hence depended on the artificial core cutoff parameter r0. The Peierls-Nabarro theory makes use of an interplanar shear law, which leads to a more realistic description of the stresses and displacements in the vicinity of a dislocation core, thus eliminating the need for the core cutoff parameter. The dependence of the critical layer thickness on the mismatch strain in films with a diamond cubic lattice is found to be similar to that predicted by the continuum elastic dislocation theory, provided that a core cutoff radius equal to about one-tenth the Burgers displacement is used.