Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:30:01.987Z Has data issue: false hasContentIssue false

Defects in Silver-Doped Mercuric Iodide Crystals and their Effect on X-Ray and Gamma-Ray Detector Performance

Published online by Cambridge University Press:  21 February 2011

R. B. James
Affiliation:
Advanced Materials Research Department, Sandia National Laboratories, Livermore, CA 94550
X. J. Bao
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
T. E. Schlesinger
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
A. Y. Cheng
Affiliation:
EG&G Energy Measurements, Goleta, CA 93116
V. M. Gerrish
Affiliation:
EG&G Energy Measurements, Goleta, CA 93116
Get access

Abstract

The processing steps associated with purification of source material, crystal growth, and attachment of electrical contacts can introduce defects into mercuric iodide (HgI2) that degrade the performance of detectors. We have employed low-temperature photoluminescence (PL) spectroscopy to study radiative recombination centers in the interfacial region between a thin semitransparent film of silver and mercuric iodide. The Ag film was found to introduce a new broad emission band centered at 5490 Å in the photoluminescence spectrum of HgI2. This PL feature can be used as a signature to identify the existence of Ag as a contaminant in HgI2 crystals and detectors. Experiments were also conducted on mercuric iodide surfaces that had been doped with silver, and the results showed that Ag is a rapid diffuser in bulk HgI2. Detectors with silver electrodes were also fabricated and tested using an americium-241 gamma-ray source. Large increases in the leakage currents were observed for the Ag-doped HgI2 devices, indicated that Ag impurities are electrically active in HgI2. These measurements show that silver is unacceptable as an electrode material for mercuric iodide x-ray and gamma-ray detector applications. In addition, they reveal that caution must be taken during handling of mercuric iodide source material, crystals, and detectors to avoid contact with silver, silver compounds, or with any material that contains silver as a contaminant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Willig, W. R., Nucl. Instrum. Methods 96, 615 (1971).Google Scholar
2. Malm, H. L., IEEE Trans. Nucl. Sci. NS–19, 263 (1972).Google Scholar
3. Ponpon, J. P., Stuck, R., and Siffert, P., Nucl. Instrum. Methods 119, 297 (1974).Google Scholar
4. Howes, J. H. and Watling, J., Mat. Res. Soc. Symp. Proc. Vol. 16, 207 (1983).Google Scholar
5. Maim, H. L., Raudoff, T. W., Martina, M., and Zanio, K. R., IEEE Trans. Nucl. Sci. NS–20, 500 (1973).Google Scholar
6. Whited, R. C. and Schieber, M., Nucl. Instrum. Methods 162, 119 (1979).Google Scholar
7. Bube, R. H., Phys. Rev. 106, 703 (1957).Google Scholar
8. Novikov, B. N. and Pimonenko, M. M., Soy. Phys. Semicond. 4, 1785 (1971).Google Scholar
9. Wu, Z. L., Merz, J. L., Berg, L. van den, and Schnepple, W. F., J. Lumin. 24, 197 (1981).CrossRefGoogle Scholar
10. Merz, J. L., Wu, Z. L., Berg, L. van den, and Schnepple, W. F., Nucl. Instrum. Methods 213, 51 (1983).Google Scholar
11. Akopyan, I. Kh., Bondarenko, B. V., Kazennov, B. A., and Novikov, B. V., Soy. Phys. Solid State 29, 238 (1987).Google Scholar
12. Wong, D., Schlesinger, T. E., James, R. B., Ortale, C., Berg, L. van den, and Schnepple, W. F., J. Appl. Phys. 64, 2049 (1988).Google Scholar
13. Wong, D., Bao, X. J., Schlesinger, T. E., James, R. B., Cheng, A. Y., Ortale, C., and Berg, L. van den, Appl. Phys. Lett. 53, 1537 (1988).Google Scholar
14. James, R. B., Bao, X. J., Schlesinger, T. E., Markakis, J. M., Cheng, A. Y., and Ortale, C., J. Appl. Phys. 66, 2578 (1989).Google Scholar
15. Petroff, P. M., Hu, Y. P., Milstein, F., J. Appl. Phys. 66, 2525 (1989).Google Scholar
16. James, R. B., Ottesen, D. K., Wong, D., Schlesinger, T. E., Schnepple, W. F., Ortale, C., and Berg, L. van den, Nucl. Instrum. Methods A283, 188 (1989).Google Scholar
17. James, R. B., Bao, X. J., Schlesinger, T. E., Markakis, J. M., Cheng, A. Y., and Ortale, C., in Fluorescence Detection III, edited by Menzel, E. R., Proc. SPIE 1054, 103 (1989).Google Scholar
18. Bao, X. J., Schlesinger, T. E., James, R. B., Stulen, R. H., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 68, 86 (1990).Google Scholar
19. James, R. B., Bao, X. J., Schlesinger, T. E., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 67, 2571 (1990).Google Scholar
20. Bao, X. J., Schlesinger, T. E., James, R. B., Stulen, R. H., Ortale, C., and Berg, L. van den, J. Appl. Phys. 67, 7265 (1990).Google Scholar
21. Williams, L. R. and Anderson, R. J., in Picosecond And Femtosecond Spectroscopy from Laboratory to Real World, Nelson, K. A., Editor, Proc. SPIE 1209, 140 (1990).Google Scholar
22. Williams, L. R., Anderson, R. J., and Banet, M. J., in Ultrafast Phenomena VII, Ippen, E., Editor (Springer-Verlag, New York, 1990).Google Scholar
23. Markakis, J. M. and Cheng, A. Y., Nucl. Instrum. Methods A283, 232 (1989).Google Scholar
24. Lamonds, H. A., Nucl. Instrum. Methods 213, 5 (1983).Google Scholar
25. Jeffrey, A. and Vlasse, M., Inorg. Chem. 6, 396 (1967).Google Scholar
26. Brandes, E. A., Smithells Metals Reference Book, 6th ed. (Butterworths, London, 1983), p. 858.Google Scholar
27. Bao, X. J., Schlesinger, T. E., James, R. B., Ortale, C., and Berg, L. van den, J. Appl. Phys. 68, 2951 (1990).Google Scholar
28. Schlesinger, T. E., Bao, X. J., James, R. B., Cheng, A. Y., Ortale, C., and Berg, L. van den, Nucl. Instrum. Methods A322, 414 (1992).Google Scholar
29. Milnes, A. G., Deep Impurities in Semiconductors (Wiley-Interscience, New York, 1963), p. 230.Google Scholar
30. Hyder, S. B., J. Appl. Phys. 48, 313 (1977).Google Scholar
31. Gurevich, Y. Y. and Ivanov, A. K., Semiconductors and Semimetals 26, 229 (1988).CrossRefGoogle Scholar
32. Ketelaar, J. A. A., Z. Physik. Chem. B26, 327 (1934).Google Scholar