Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T10:16:15.984Z Has data issue: false hasContentIssue false

CW Laser Induced Deep Level Defects in Virgin Silicon.

Published online by Cambridge University Press:  15 February 2011

A. Chantre
Affiliation:
Cnet/Cns – BP: 42 – 38240 Meylan-Grenoble –France.
M. Kechouane
Affiliation:
Cnet/Cns – BP: 42 – 38240 Meylan-Grenoble –France.
D. Bois
Affiliation:
Cnet/Cns – BP: 42 – 38240 Meylan-Grenoble –France.
Get access

Abstract

Deep Level Transient Spectroscopy has been used to investigate cw laser induced defects in virgin silicon. Two main regimes have been found. In the solid phase regime, two well defined deep levels at Ec−0.19 eV and Ec−0.45 eV are observed. This point defect introduction is proposed to be involved in the degradation of ion-implanted cw laser annealed junctions. The mechanism leading to point defects generation is likely to involve trapping of in–diffused vacancies, quenched–in from the high temperature state. In the slip lines or melt regimes, additionnal deep levels are detected, which are ascribed to dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

( 1) Gat, A., Gibbons, J. F., Magee, T. J., Peng, J., Deline, V., Williams, P., Evans, C. A. Jr, Appl. Phys. Lett., 32, 276 (1978).Google Scholar
( 2) Johnson, N. M., Bartelink, D. J., Moyer, M. D., Gibbons, J. F., Lietoila., A., Ratnakumar, K. N., Regolini, J. L., Laser and Electron Beam Processing of Materials (Academic Press, New York, 1980), edited by White, C. W. and Peercy, P. S., pp 423429.CrossRefGoogle Scholar
( 3) Sasaki, Y., Tsujimoto, K., Suzuki, T., Itoh, K., Mitsuishi, T., llth Int. Conf. on Defects and Radiation Effects in Semiconductors Oiso 1980;Google Scholar
Inst. Phys. Conf. Ser. n° 59, pp 497–501.Google Scholar
( 4) Sheng, N. H., Mizuta, M., Merz, J. L., Laser and Electron Beam Solid Interactions and Materials Processing (North Holland, New York, 1981), edited by Gibbons, J. F., Hess, L. D. and Sigmon, T. W., pp 155162.Google Scholar
( 5) Auvert, G., Bensahel, D., Georges, A., Nguyen, V. T., Henoc, P., Morin, F., Coissard, P., Appl. Phys. Lett., 38, 613 (1981).CrossRefGoogle Scholar
( 6) Lang, D. V., J. Appl. Phys., 45, 3023 (1974).Google Scholar
( 7) Baumgart, H., Philipp, F., Rozgonyi, G. A., Gösele, U., Appl. PHys. Lett., 38, 95 (1981).CrossRefGoogle Scholar
( 8) Lefèvre, H., Shulz, M., Appl. Phys. 12, 45 (1977).Google Scholar
( 9) Johnson, N. M., Regolini, J. L., Bartelink, D. J., Gibbons, J. F., Ratnakumar, K. N., Appl. Phys. Lett., 36, 425 (1980).Google Scholar
( 10) Troxell, J. R., Ph. D. Thesis, Lehigh University, (1979), and private communication.Google Scholar
( 11) Krynicki., J., Bourgoin, J. C., Yassal, G., Rev. Phys. Appl., 14, 481 (1979).CrossRefGoogle Scholar
( 12) Kimerling, L. C., Radiation Effects in Semiconductors, 1976;Google Scholar
Inst. Phys. Conf. Ser. n° 31, pp 221–230.Google Scholar
( 13) Wang, K. L., Appl. Phys. Lett., 36, 48, 1980.Google Scholar
( 14) Kimerling, L. C., Benton, J. L., idem Ref. 2, pp 385–396.Google Scholar
( 15) Kimerling, L. C., Patel, J. R., Benton, J. L., Freeland, P. E., idem Ref. 3, pp 401–406.Google Scholar
( 16) Seeger, A., Chik, K. P., Phys. Stat. Sol., 29, 455 (1968).Google Scholar