Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:59:35.466Z Has data issue: false hasContentIssue false

Continuum and Stochastic Modeling on the Role of Gel Microstructure in Zeolite Crystallization

Published online by Cambridge University Press:  10 February 2011

Michael Tsapatsis
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
Dionisios G. Vlachos
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

Continuum and stochastic mathematical models are introduced describing zeolite nucleation and crystal growth from precursor gels. Model predictions are in agreement with existing experimental results. For example, the maximum in the nucleation rate profile under constant supersaturation is observed well before substantial crystallization occurs. Moreover, simulations indicate a strong influence of the gel microstructure on apparent crystallization kinetics, as well as particle size and morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fajula, F. in Barthoneuf, D., Derouane, E. G. and Hölderich, W. (Eds.), Guidelines for Mastering the Properties of Molecular Sieves, NATO ASI Series, Plenum Press, New York, 1989.Google Scholar
2. Davis, M. E. and Lobo, R. F., Chem. Mater., 4 (1992) 756 Google Scholar
3. Budd, P. M., Myatt, G. J., Price, C., Carr, S. W., Zeolites, 14 (1994) 198 Google Scholar
4. Thompson, R. W. and Dyer, A., Zeolites, 5 (1985) 302 Google Scholar
5. Thompson, R. W. and Dyer, A., Zeolites, 5 (1985) 292 Google Scholar
6. Zhdanov, S. P. in Gould, R. F. (Ed.), Molecular Sieve Zeolites-1, ACS Advances in Chem.Ser. 101, ACS, Washington, DC, 1971 Google Scholar
7. Subotic, B. and Graovac, A. in Drzaj, B., Hocevar, S. and Pejovnik, S. (Eds.) Zeolites, Elsevier, Amsterdam, 1985 Google Scholar
8. Thompson, R. W., Zeolites, 12 (1992) 837 Google Scholar
9. Gonthier, S., Gora, L., Güiray, I. and Thompson, R. W., Zeolites, 13 (1993) 414 Google Scholar
10. Myatt, G. J., Budd, P. H., Price, C., Hollway, F. and Carr, S. W., Zeolites,14 (1994) 190 Google Scholar
11. Tsapatsis, M., Lovallo, M. and Davis, M. E., Microporous Materials, 5 (1996) 381 Google Scholar
12. Golemme, G., Nastro, A., Nagy, J. B., Subotic, B., Crea, F. and Aiello, R., Zeolites, 11 (1991) 776 Google Scholar
13. Dokter, W. H., Garderen, H. F. Van, Beelen, T. P. M., Santen, R. A. Van and Brass, W. Angew. Chem. Int. Ed. Engl., 34 (1995) 73 Google Scholar
14. Tsapatsis, M., Lovallo, M., Okubo, T., Davis, M. E. and Sadakata, , Chem. Mater., 7 (1995) 1734 Google Scholar
15. Gavalas, G. R. AIChE Journal, 26(4) (1980) 577 Google Scholar
16. Vlachos, D. G., Mater. Sci. Eng. A, 204 (1995) 90.Google Scholar