Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T04:58:05.562Z Has data issue: false hasContentIssue false

A continuous composition spread approach towards monolithic, wavelength-selective multichannel UV-photo-detector arrays

Published online by Cambridge University Press:  09 January 2014

H. von Wenckstern
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
Z. Zhang
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
J. Lenzner
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
F. Schmidt
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
M. Grundmann
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig, Germany
Get access

Abstract

Continuous composition spread (CCS) methods have been very successfully used for exploiting and optimization of new material systems. Concerning sample growth by pulsed-laser deposition (PLD) approaches towards thin films with a CCS are involved, here movable masks for partial shadowing of the substrate and multiple targets are needed to obtain linearly varying changes of composition. Here we make use of an approach allowing deposition of thin films with CCS at high growth rates by using segmented PLD targets. We describe how this approach can be used to fabricate monolithic, wavelength-selective multichannel UV-photo-detector arrays.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

von Wenckstern, H, Zhang, Z., Schmidt, F., Lenzner, J., Hochmuth, H. and Grundmann, M., CrystEngComm 15, 10020 (2013)CrossRefGoogle Scholar
Christen, H. M., Silliman, S. D., and Harshavardhan, K. S., Rev. Sci. Instrum., 2001, 72, 2673.CrossRefGoogle Scholar
Lajn, A., von Wenckstern, H., Zhang, Z., Czekalla, C., Biehne, G., Lenzner, J., Hochmuth, H., Lorenz, M., Grundmann, M., Künzel, S., Vogt, C., Deneke, R., J. Vac. Sci. Technol. B 27, 1769 (2009)CrossRefGoogle Scholar
Zhang, Z., von Wenckstern, H., Schmidt, M. and Grundmann, M., Appl. Phys. Lett. 99, 083502 (2011)CrossRefGoogle Scholar
Zhang, Z., von Wenckstern, H. and Grundmann, M., Appl. Phys. Lett. 103, 171111 (2013)CrossRefGoogle Scholar