Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:25:58.426Z Has data issue: false hasContentIssue false

Composition and Chemical Structure of Nitrided Silica Gel

Published online by Cambridge University Press:  15 February 2011

R. K. Brow
Affiliation:
Department of Materials Science and EngineeringThe Pennyslvania State University, University Park, PA 16802
C. G. Pantano
Affiliation:
Department of Materials Science and EngineeringThe Pennyslvania State University, University Park, PA 16802
Get access

Abstract

Sol/gel derived silica thin films were thermally treated in NH3 for four hours at temperatures up to 1300C. The films were analyzed by ellipsometry, X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). Over 30 mol% nitrogen was incorporated in the film treated at 1300C. Using IR and XPS analyses, -NHx groups were found to be present after low temperature treatments, while nitrogen was incorporated in an oxynitride structure after the higher temperature treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pantano, C. G., Glaser, P. M. and Armbrust, D. J., Ultrastructure Processing of Ceramics Glass and Composites, ed. Hench, L.L. and Ulrich, D., J. Wiley and Sons, NY. 1984.Google Scholar
2. Glaser, P. M. and Pantano, C. G., accepted for publication in J. Non Cryst. Solids.Google Scholar
3. Brinker, C. J., and Haaland, D. M., J. Amer. Ceram. Soc., 66 (11) 758765 (1983).CrossRefGoogle Scholar
4. Mulfinger, H. O. and Franz, H., Glastechn. Ber., 38 (6), 235242 (1965).Google Scholar
5. Wurzbach, J. A. and Grunthaner, F. J., J. Electrochem Soc., 130 (3) 691699 (1983).CrossRefGoogle Scholar
6. Wagner, C. D., Riggs, W. M., Davies, L. E. and Moulder, J. F., Handbook of X-Ray Photoelectron Spectroscopy, p. 2122, Perkin-Elmer Corp., Eden Prairie, Mn, 1979.Google Scholar
7. Brinker, C. J., J. Amer. Ceram. Soc., 65 (1), C45 (1982).CrossRefGoogle Scholar
8. Wu, C., King, C., Lee, M. and Chen, C., J. Electrochem Soc., 129 (7) 15591563 (1982).Google Scholar
9. Morrow, B. A., Cody, I. A. and Lee, L. S. M., J. Phys. Chem., 79 (11) 24052408 (1975).CrossRefGoogle Scholar
10. Bruggeman, D. A. G., Ann. Phys. Leipzig, 24 636 (1935).Google Scholar
11. Kuiper, A. E. T., Koo, S. W., Habraken, F. H. P. M., and Tamminga, Y., J. Vac. Sci. Technol. B, 1 (1) 6266 (1983).Google Scholar
12. Raider, S. I., Flitsch, R., Aboaf, J. A. and Pliskin, W. A., J. Electrochem. Soc., 123 (4) 560565 (1976).CrossRefGoogle Scholar
13. Jen, J.S., Ceram. Eng. Sci Proc., Sept.-Oct. 450–457 (1982)Google Scholar
14. Brow, R. K. and Pantano, C. G., accepted for publication in J. Amer. Ceram. Soc., 67 (4) (1984).CrossRefGoogle Scholar