Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T01:14:16.771Z Has data issue: false hasContentIssue false

Chemical Composition and Electronic Properties of CuInS2/Zn(S,O) Interfaces

Published online by Cambridge University Press:  31 January 2011

Rodrigo Sáez-Araoz
Affiliation:
[email protected], Helmholtz-Zentrum Berlin für materialien und Energie, Berlin, Germany
Iver Lauermann
Affiliation:
[email protected], Helmholtz-Zentrum-Berlin, Berlin, Germany
Axel Neisser
Affiliation:
[email protected], United States
Martha Ch Lux-Steiner
Affiliation:
[email protected], Helmholtz-Zentrum Berlin für materialien und Energie, Berlin, Germany
Ahmed Ennaoui
Affiliation:
[email protected], Helmholtz-Zentrum-Berlin, Heterogeneous Material Systems, Berlin, Germany
Get access

Abstract

We report on the chemical deposition and electronic properties of CuInS2/Zn(S,O) interfaces. The Zn(S,O) buffer was grown by a new chemical bath deposition (CBD) process that allows the tailoring of the S/O ratio in the films. Resulting Zn(S,O) films exhibit transparencies above 80% (for λ>390 nm) and an optical energy band gap of 3.9 eV which decreases to 3.6 eV after annealing in air at 200°C. Production line CuInS2 (CIS) absorbers provided by Sulfurcell Solartechnik GmbH are used as substrates for the investigation of the CIS/Zn(S,O) interface and the chemical composition of Zn(S,O). A ZnS/(ZnS+ZnO) ratio of 0.5 is found by X-ray photoelectron spectroscopy and X-ray excited Auger electron spectroscopy (XPS and XAES). The valence band offset between the heterojunction partners (ΔEV = 1.8 ± 0.2 eV) has been determined by means of XPS and ultraviolet photoelectron spectroscopy (UPS). Considering the energy band gap of the CIS absorber and the measured band gap of Zn(S,O), the conduction band offset (ΔEC) is calculated as: resulting in a spike of 0.5±0.3 eV in the conduction band at the heterojunction before annealing. After the heat treatment, the valence band offset is reduced to 1.5±0.2 eV and the calculated conduction band offset remains at 0.5±0.3 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennaoui, A.. Bär, M., Klaer, J. Kropp, T, Sáez-Araoz, R. and Lux-Steiner, M. Ch. Prog Photovolt: Res Appl. 14:499511 (2006)Google Scholar
2. Ennaoui, A. Kropp, T. and Lux-Steiner, M. Ch.. German Patent. WO/2006/018013 (2006)Google Scholar
3. Ennaoui, A. Bär, M., Rusu, M. Klenk, R. Klaer, J. Kropp, T. Sáez-Araoz, R., Schock, H.W. and Lux-Steiner, M. Ch.. Proc. 21st EU-PVSEC Dresden, Germany, pp. 18351838 (2006)Google Scholar
4. Bär, M., Ennaoui, A. Klaer, J. Kropp, T. Sáez-Araoz, R., Allsop, N. Lauermann, I. Schock, H.W. and Lux-Steiner, M. Ch.. J. Appl. Phys. 99, 123503 (2006)Google Scholar
5. Bär, M., Ennaoui, A. Klaer, J. Kropp, T. Sáez-Araoz, R., Lehmann, S. Grimm, A. Lauermann, I. Loreck, Ch. Sokoll, St. Schock, H.W. Fischer, Ch.H. and Lux-Steiner, M. Ch.. J Appl. Phys. 100, 064911(2006)Google Scholar
6. Bär, M., Ennaoui, A. Klaer, J. Sáez-Araoz, R., Kropp, T. Weinhardt, L. Heske, C. Schock, H.W. Fischer, Ch.H. and Lux-Steiner, M. Ch.. Chem. Phys Lett. 433, 7174 (2006)Google Scholar
7. Sáez-Araoz, R., Ennaoui, A. Niesen, T. P. Neisser, A. and Lux-Steiner, M. Ch.. 22nd EU-PVSEC Milan, Italy, pp. 21332136 (2007)Google Scholar
8. Meyer, N. Meeder, A. and Schimd, D.. Thin Solid Films, 515:15, 59795984 (2007)Google Scholar
9. Ennauoi, A. Sáez-Araoz, R., T, Kropp and Lux-Steiner, M. Ch.. Patent pending (2009)Google Scholar
10. Lauermann, I. et al. Mat. Res. Soc. Symp. Proc 763, B4.5.1. (2003)Google Scholar
11. Briggs, D. Seah, M. P.. Auger and X-ray Photoelectron Spectroscopy, Practical Surface analysis. Vol.1. Wiley. New York, 1990.Google Scholar
12. Turowski, M. Margaritondo, G. Kelly, M. H. and Thomlinson, R. D.. Phys. Rev. B 31 10221027 (1985)Google Scholar
13. Hashimoto, Y. Takeuchi, K. and Ito, K.. Appl. Phys. Lett. 67 (1995)Google Scholar
14. Muffler, H. J. Fischer, Ch. H. Giersig, M. Bär, M. and Lux-Steiner, M. Ch.. J. Appl. Phys. 91 10 (2002)Google Scholar
15. Scofield, J. H.. J. Electr. Spectr. rel. Phen. 8, 129(1976)Google Scholar
16. Scheer, R. and Lewerenz, H. J.. J. Vac. Sci. Technol. A 12 51 and 56 (1994)Google Scholar
17. Weinhardt, L. Fuchs, O. Groβ, F., Storch, S. Umbach, E. Dhere, N.G. Kadam, A. A. Kulkani, S. S. and Heske, C.. Appl. Phys. Lett. 86, 062109, (2005)Google Scholar
18. Sáez-Araoz, R., Abou-Ras, D., Niesen, T.P. Neisser, A. Wilchelmi, K. Lux-Steiner, M.Ch. and Ennaoui, A.. Thin Solid Films 571:7, pp 23002304 (2009)Google Scholar
19. Sartale, S.D. Sankapal, B.R. Lux-Steiner, M., Ennaoui, A. Thin Solid Films 480–481 (2005) 168172 Google Scholar