Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T06:28:24.906Z Has data issue: false hasContentIssue false

Atomistic Studies of Grain Boundaries in NiAl

Published online by Cambridge University Press:  22 February 2011

M. Yan
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
S. P. Chen
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
V. Vitek
Affiliation:
Dept. of Materials Science and Engineering, Univ. of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

This paper presents the results of atomistic studies of grain boundaries in NiAl B2 alloy. The interatomic forces are described by Finnis-Sinclair type N-body potentials, and are fitted to properties of NiAl. The results show that the structure, energy and cohesive strength of a grain boundary depend strongly on its chemistry, and a grain boundary possessing more Al is the weakest. Energies of antisite defects at the grain boundary ∑5 {210} are also calculated, and the results suggest that Al has much larger tendency to segregate at a grain boundary than Ni does.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Darolia, R., JOM 43, 44 (1991).Google Scholar
2. Miracle, D., Acta Metall. 41, 649684 (1993).Google Scholar
3. Brzeski, J. M., Hack, J. E., Darolia, R. and Field, R. D., Mater. Sci. and Eng., A 170, 11 (1993).Google Scholar
4. George, E. P. and Liu, C. T., J. Mater. Res. 5, (1990).Google Scholar
5. Finnis, M. W., and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
6. Ackland, G. J., Finnis, M. W., and Vitek, V., J. of Phys. F 18, L153 (1988).Google Scholar
7. Ackland, G. J., Tichy, G., Vitek, V., and Finnis, M. W., Phil. Mag. A 56, 735 (1987).Google Scholar
8. Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
9. Vitek, V., Ackland, G. J., and Cserti, J., in Alloy Phase Stability and Design (eds. G.M. Stocks, D. P. Pope, and A.F. Giamei), Mater. Res. Soc. Symp., 186, 237 (1991).Google Scholar
10. Bradley, A. J. and Taylor, A., Proc. Roy. Soc. A 159, 56 (1937).Google Scholar
11. Yan, M., Vitek, V., and Chen, S. P., in preparation.Google Scholar
12. Sutton, A. P. and Vitek, V., Phil. Trans. Royal Soc., London A 309, 1, (1983).Google Scholar
13. Chen, S. P., Voter, A. F., Boring, A. M., Albers, R. C., and Hay, P. J., in High Temperature Ordered Intermetallic Alloys III, (eds. C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch), Mater. Res. Soc. Symp. Proc. 133, 149 (1989).Google Scholar
14. Petton, G. and Farkas, D., Scrip. Metall., 25, 55 (1991)Google Scholar
15. Darolia, R., Chang, K. M., and Hack, J. E., Intermetallics 1, 65 (1993).Google Scholar
16. Fonda, R. W., Yan, M., and Luzzi, D. E., submitted to Phil. Mag. Lett. (1994).Google Scholar