Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:07:52.603Z Has data issue: false hasContentIssue false

Atomistic Monte Carlo Simulations of Surface Segregation in (FexMn1-x)O and (NixCo1-x)O

Published online by Cambridge University Press:  10 February 2011

C. Battaile
Affiliation:
Department of Materials Science and Engineering, University of MichigN,Ann Arbor, MI 48109, stimpson@;engin.umich.edu
R. NajafBdi
Affiliation:
Knolls Atonmic Power Laboratory, Schenctady, NY 12309
D. J Srolovitz
Affiliation:
Department of Materials Science and Engineering, University of MichigN,Ann Arbor, MI 48109, stimpson@;engin.umich.edu
Get access

Abstract

An atomistic Monte Carlo (MC) method has been used to predict equilibrium segregation of isovalent cations to (001) surfaces in (Fex.Mn-x)O and (NixCol-x)O. The surface is found to be enriched with solvent in both systems. Long-range electrostatic interactions and atomic motions that occur on small time scales make the MC approach very computationally demanding. The Free Energy Minimization (FEM) method is a more efficient alternative for performing such segregation simulations, but involves several approximations. Comparison of the surface segregation profiles determined using the MC and FEM simulation methods show that the two are essentially indistinguishable. The FEM results can be obtained about 1,000 times faster than the MC predictions. Therefore, the FEM method is a practical and accurate alternative to the more cumbersome MC approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Foiles, S.M., Phys. Rev. B, 32, 7685–93 (1985).Google Scholar
2. Mackrodt, W.C. and Tasker, P.W., J. Amer. Ceram. Soc., 72, 1576–83 (1989).Google Scholar
3. Najafabadi, R., Wang, H.Y., Srolovitz, D.J., and LeSar, R., Acta metall., 39, 3071–82 (1991).Google Scholar
4. Zhao, L., Najafabadi, R., and Srolovitz, D.J., Modelling Simul. Mater. Sci., 1, 539–51 (1993).Google Scholar
5. Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983–91 (1986).Google Scholar
6. LeSar, R., Najafabadi, R., and Srolovitz, D.J., Phys. Rev. Lett., 63, 624–7 (1989).Google Scholar
7. Sutton, A.P., Phil. Mag. A, 60, 147–59 (1989).Google Scholar
8. Battaile, C., Najafabadi, R., and Srolovitz, D.J. in Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D. Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Proc. 357, Pittsburgh, 1995) pp. 435–40.Google Scholar
9. Norgett, M.J., J. Phys. C, 4, 298306 (1971).Google Scholar
10. Chen, T.S., de Wette, F.W., and Alldredge, G.P., Phys. Rev. B, 15, 1167–86 (1977).Google Scholar
11. Mackrodt, W.C. and Tasker, P.W., J. Amer. Ceram. Soc., 72, 1576–83 (1989).Google Scholar
12. Ewald, P.P., Annalen der Physik, 64, 253–87 (1921).Google Scholar
13. Dick, B.G. and Overhauser, A.W., Phys. Rev., 112, 90103 (1958).Google Scholar
14. Sangster, M.J.L. and Stoneham, A.M., Phil. Mag. B, 43, 597608 (1981).Google Scholar
15. Grimes, R.W. and , S. Vyas (private communication).Google Scholar
16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.. Teller, A.H., and Teller, E., J. Chem. Phys. 21, 1087–92 (1953).Google Scholar
17. Battaile, C., Najafabadi, R., and Srolovitz, D.J., J. Amer. Ceram. Soc. (1995) in press.Google Scholar
18. Vaks, V.G., Larkin, A.I., and Pikin, S.A., Sov. Phys. JETP 24, 240–9 (1967).Google Scholar