Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T03:58:01.203Z Has data issue: false hasContentIssue false

Are the Materials Properties of Indiumnitride Dominated by Defects?

Published online by Cambridge University Press:  01 February 2011

Petra Specht
Affiliation:
[email protected], UC Berkeley, Dept. of Mat.Sci.&Eng., LBNL, MS 62R0203, One Cyclotron Road, Berkeley, CA, 94720, United States, 510-495-2934
William Hong
Affiliation:
[email protected], UC Berkeley, Dept. of Mat.Sci.&Eng., and Mat.Sci.Div., LBNL, Berkeley, CA, 94720, United States
Eicke R. Weber
Affiliation:
[email protected], UC Berkeley, Dept. of Mat.Sci.&Eng., and Mat.Sci.Div., LBNL, Berkeley, CA, 94720, United States
Get access

Abstract

Indium nitride (InN) is a promising yet technologically challenging material with a high defect density and unusual material properties. Its high electron mobility may be utilized in high power electronic devices, and its high absorbance and low energy optical response make it a promising candidate for multi-junction, high-efficient solar cell technology. Studies of absorption and photoluminescence optical response of epitaxial InN resulted in a large correction of the fundamental bandgap from the originally proposed 1.9 eV to now below 0.7 eV. Yet, it is still debated if the commonly measured optical transitions below the original high bandgap values are actually caused by a large concentration of defects, on the order of 1020/cm3, rather than reflecting a low fundamental bandgap. Many applications of this material, e.g. in high-efficient solar cell technology, are primarily dependent on the successful production of a contacted p-n junction, which has not yet been achieved. This contribution addresses the controversy in the bandgap discussion of InN. Valence electron energy loss spectroscopy (VEELS) of InN allows spatially resolved analysis of the density of states in the transmission electron microscope (TEM). Standard optical characterization is compared with results from TEM characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rinke, R., Scheffler, M., Qteish, A., Winkelnkemper, M., Bimberg, D., Neugebauer, J., Appl. Phys. Lett. 89, 161919 (2006)Google Scholar
2. Furthmueller, J., Hahn, P.H., Fuchs, F., Bechstedt, F., Phys. Rev. B 72, 205106 (2005)Google Scholar
3. Wu, J., Walukiewicz, W., Yu, K.M., , J.W. Ager III, Haller, E.E., Lu, H., Schaff, W.J., Appl. Phys. Lett. 80, 4741 (2002)Google Scholar
4. Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V. et al. ,, Phys. Stat. Sol. B 229, R1 (2002)Google Scholar
5. Nakamura, S., J. Vac. Sci. Technol. A 13, 705 (1995)Google Scholar
6. Wetzel, C., Nitta, S., Takeuchi, T., Yamaguchi, S., Amano, H., Akasaki, I., MRS Internet J. Nitride Semicond. Res. 3, 31 (1998)Google Scholar
7. McCluskey, M.D., VandeWalle, C.G., Master, C.P., Romano, L.T., Johnson, N.M., Appl. Phys. Lett. 72, 2725 (1998)Google Scholar
8. Ryan, P., McGuinness, C., Downes, J.E., Smith, K.E., Doppalapudi, D., Moustakas, T.D., Phys. Rev. B 65, 205201 (2002)Google Scholar
9. Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998)Google Scholar
10. Bartel, T., Jinschek, J.R., Freitag, B., Specht, P., Kisielowski, C., phys. stat. sol. (a) 203, 167 (2006)Google Scholar
11. Jinschek, J.R., Erni, R., Gardner, N.F., Kim, A.Y., Kisielowski, C., sol. state comm. 137, 230 (2006)Google Scholar
12. Kisielowski, C., Lilienthal-Weber, Z., Nakamura, S., Jpn. J. Appl. Phys. 36, 6932 (1997)Google Scholar
13. Specht, P., Zhao, R., Gebauer, J., Weber, E.R., Proc. of the 4th Symp. on Non-Stoich. III-V Comp., Asilomar, USA, Oct. 2002, eds.: P. Specht et al., Phys. Mikrostrukt. Halbl. vol. 27, (2002), p. 31 Google Scholar
14. Specht, P., Lutz, R.C., Zhao, R., Weber, E.R., Liu, W.K., Bacher, K., Towner, F.J., Stewart, T.R., Luysberg, M., J. Vac. Sci. Technol. B17, 1200 (1999)Google Scholar
15. Monemar, B., Paskov, P.P., Kasic, A., Superlatt. and Microstruct. 38, 38 (2005)Google Scholar
16. Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Solnyshkov, D.D., Vekshin, V.A., Kop'ev, P.S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Shimono, K., Kasic, A., Monemar, B., Phys. Rev. Lett. 92, 117407 (2004)Google Scholar
17. Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J.C., Weber, E.R., Haller, E.E., Lu, H., Schaff, W.J., Barcz, R., Jakiela, R., Appl. Phys. Lett. 84, 2805 (2004)Google Scholar
18. Terauchi, M., Tanaka, M., Tsuno, K., Ishida, M., Microsc, J.. Appl. Phys. Lett. 194, 203 (1999)Google Scholar
19. Tiemeijer, P.C., Inst. Phys. Conf. Ser. 161, 191 (1999)Google Scholar
20. Benner, G., Esser, E., Matiejevic, M., Orchowski, A., Schlossmacher, P., Thesen, A., Haider, M., Hartel, P., Microsc. Microanal. 10, 108 (2004)Google Scholar
21. Brink, H.A., Barfels, M.M.G., Burgner, R.P., Edwards, B.N., Ultramicroscopy 96, 367 (2003)Google Scholar
22. Deveaud, B., Guevenais, B., Poudoulec, A., Regreny, A., d'Anterroches, C., Phys. Rev. Lett. 65, 2317 (1990)Google Scholar
23. Specht, P., Ho, J., Xu, X., Armitage, R., Weber, E.R., Erni, R., Kisielowski, C., Solid State Comm. 135, 340 (2005)Google Scholar
24. Erni, R., Browning, N.D., The Impact of Surface and Retardation Losses on Valence Electron Energy Loss Spectroscopy”, submitted to Ultramicroscopy (2007)Google Scholar
25. Specht, P., Xu, X., Armitage, R., Weber, E.R., Erni, R., Kisielowski, C., Physica B 376-77, 552 (2006)Google Scholar