Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:33:58.826Z Has data issue: false hasContentIssue false

Applicability of Sneddon Relationships to the Real Case of a Rigid Cone Penetrating an Infinite Half Space

Published online by Cambridge University Press:  10 February 2011

Jack C. Hay
Affiliation:
I.B.M. Research, T.J. Watson Research Center, P.O. Box 218, Room 25-225, Yorktown Heights, NY 10598
A. Bolshakov
Affiliation:
Department of Materials Science, Rice University, 6100 Main Street; MS 321, Houston, TX 77005-1892
G. M. Pharr
Affiliation:
Department of Materials Science, Rice University, 6100 Main Street; MS 321, Houston, TX 77005-1892
Get access

Abstract

The analytical solution for a “rigid” axisymmetric indenter penetrating an elastic half-space has been investigated as it pertains to the techniques used in the analysis of experimental nanoindentation data. It is observed that the analytical Sneddon solution and finite element simulations, with the same boundary conditions, deviate significantly from the physical interpretation of a rigid conical indenter. The severity of the deviations depends on both the half-included angle of the indenter and the Poisson ratio of the material being indented. The solution is found to underestimate the actual contact radii by up to 9% and 27% for rigid conical indenters with half-included angles of 70.32° and 42.28°, respectively. Approximate analytical corrections to the Sneddon relationships are presented for the case of a right circular cone of arbitrary included angle. Finite element simulations of a rigid indenter corroborate the deviations of the Sneddon solution, and provide support for the modified solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P., Shnyrev, G. D., Zavod. Lab., 41, 1137 (1975).Google Scholar
2. Shorshorov, M. Kh., Bulychev, S. I., Alekhin, V. P., Sov. Phys. Dokl., 26, 769 (1981).Google Scholar
3. Bulychev, S. I., Alekhin, V. P., Zavod. Lab., 53, 76 (1987).Google Scholar
4. Oliver, W. C., Pharr, G. M., J. Mater. Res., 7, 15641583 (1992).Google Scholar
5. Doemer, M. F., Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
6. Bolshakov, A., Pharr, G. M., Mat. Res. Soc. Symp. Proc., 436, 189194 (1997).Google Scholar
7. Ritter, J. E., Lardner, T. J., Madsen, D. T., Gionazzo, R. J., in Materials in Microelectronic and Optoelectronic Packaging, American Ceramic Society, p. 379 (1993).Google Scholar
8. Gao, H., Chiu, C-H, Lee, J., Int. J. Solids Structures, 29, 24712492 (1992).Google Scholar
9. Bolshakov, A., Oliver, W. C., Pharr, G. M., J. Mater. Res., 11, 760768 (1996).Google Scholar
10. Larsen, T. A., Simo, J. C., J. Mater. Res., 7, 618 (1992).Google Scholar
11. Boussinesq, J., Applications des Potentiels a l'étude de iquilibre et du mouvement des solides ilastiques (Gauthier-Villars, Paris, 1885).Google Scholar
12. Harding, J. W., Sneddon, I. N., Proc. Cambridge Phil. Soc., 41, 1626 (1945).Google Scholar
13. Sneddon, I. N., Int. J. Engng. Sci., 3, 4757 (1965).Google Scholar
14. Sneddon, I. N., Fourier Transforms. McGraw-Hill Book Company, Inc., 1951, pp. 450467.Google Scholar