Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:33:21.206Z Has data issue: false hasContentIssue false

Anti-Site Bonds and the Structure of Interfaces in SiC

Published online by Cambridge University Press:  21 February 2011

P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
J. Yang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Get access

Abstract

High resolution electron microscopy has been used to study the structure of the 3C/6H interface, Σ,=3 {111}and Σ.=3 {112}grain boundaries in 3C-SiC. In SiC, as in other compound semiconductors, anti-site bonds occur in a variety of defects. These are high energy bonds comparable to that of dangling bonds. But, while dangling bonds at the grain boundaries may be eliminated by reconstruction just as in elemental semiconductors, it may not be possible to avoid anti-site bonds.These problems are discussed for the Σ=3 {112} grain boundary, where the structures proposed for Ge and Si are used as starting models for SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shockley, W., “Introductory Remarks” in Silicon Carbide: A High Temperature Semiconductor, Ed. O'Connor, J. R. and Smiltens, J., Pergamon Press (1960).Google Scholar
[2] Amorphous and Crystalline Silicon Carbide, edited by Rahman, M. M., Yang, C.-W., and Harris, G. L. Springer Proceedings in Physics, 43, (Springer, Berlin, Heidelberg, 1989).Google Scholar
[3] Powell, J. A. and Will, H. A., J. Appl. Phys. 43, 1400 (1972).Google Scholar
[4] Jepps, N. W., Smith, D. J. and Page, T. F., Acta Cryst. A 35, 916 (1979).Google Scholar
[5] Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 41, 2832 (1990).Google Scholar
[6] Pirouz, P., Chorey, C. M. and Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).Google Scholar
[7] Cheng, T. T., Pirouz, P. and Powell, J. A., Mat. Res. Soc. Symp. Proc. 144, 189 (1989).Google Scholar
[8] Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 41, 2948 (1990).Google Scholar
[9] Lambrecht, W. R. L., Lee, C. H. and Segall, B., Mat. Res. Soc. Symp. Proc.,159, (1990). In press.Google Scholar
[10] Maeda, K., Suzuki, K., Fujita, S., Ichihara, M. and Hyodo, S., Philos. Mag. A57, 573 (1988).Google Scholar
[11] Matsunami, H., Nishino, S., and Ono, H., IEEE Trans. Electron. Devices. ED–28, 1235 (1981).Google Scholar
[12] Nishino, S., Powell, J. A., and Will, H., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
[13] Pirouz, P., in Polycrystalline Semiconductors, Springer Proceedings in Physics 35, 200 (1989).Google Scholar
[14] Kong, H. S., Glass, J. T., and Davis, R. F., Appl. Phys. Lett., 49, 1074 (1986).Google Scholar
[15] Shibahara, K., Kuroda, N., Nishino, S., and Matsunami, H., Jpn. J. Appl. Phys. 26, L1815 (1987).Google Scholar
[16] Nishino, S., Matsunami, H., and Tanaka, T., J. Crystal Growth, 45, 144 (1978).Google Scholar
[17] Matsunami, H., Shibahara, K., Kuroda, N., Yoo, W. and Nishino, S., in Amorphous and Crystalline Silicon Carbide, Springer Proceedings in Physics 34, 34 (1989).Google Scholar
[18] Kong, H. S., Glass, J. T. and Davis, R. F., J. Appl. Phys. 64, 2672 (1988).Google Scholar
[19] Dahmen, U. and Westmacott, K. H., Scripta Metall., 22, 1673 (1988).Google Scholar
[20] Van Tendeloo, G. and Amelinckx, S., Acta Cryst. A30, 431 (1974).Google Scholar
[21] Gratias, D., Portier, R., and Fayard, M., Acta Cryst. A35, 885 (1979).Google Scholar
[22] Pirouz, P., Ernst, F. and Cheng, T. T., Mat. Res. Soc. Symp. Proc. 116, 57 (1988).Google Scholar
[23] Matthews, J. W., Phil. Mag. 7, 915 (1962).Google Scholar
[24] Dickson, E. W. and Pashley, D. W., Phil. Mag. 7, 1315 (1962).Google Scholar
[25] Jacobs, M. H. and Stowell, M. J., Phil. Mag. 11, 591 (1965).Google Scholar
[26] Kong, H. S., Jiang, B. L., Glass, J. T., Rozgonyi, G. A. and More, K. L., J. Appl. Phys. 63, 2645 (1988).Google Scholar
[27] Hornstra, J., Physica 25, 409 (1959).Google Scholar
[28] Vaudin, M. D., Cunningham, B. and Ast, D. G., Scripta Metall. 17, 191 (1983).Google Scholar
[29] Paxton, A. T., D.Phil. Thesis, University of Oxford, (1987).Google Scholar
[30] Paxton, A. T. and Sutton, A. P., Acta Metall. 37, 1693 (1989).Google Scholar
[31] Prutton, M., Surface Physics,Clarendon Press, Oxford (1983).Google Scholar
[32] Möller, H.-J., Phil. Mag. A 43, 1053 (1981).Google Scholar
[33] Cracknell, A. P., Applied Group Theory,Pergamon Press, Oxford (1968).Google Scholar
[34] Pond, R. C. and Vlachavas, D. S., Proc. Royal Soc. Lond. A 386, 95 (1983).Google Scholar
[35] Fontaine, C. and Smith, D. A., Appl. Phys. Lett. 40, 153 (1982).Google Scholar
[36] Pond, R. C., Physique, J., Colloque C1 43, C1-51 (1982).Google Scholar
[37] Pond, R. C., Bacon, D. J. and Bastaweesy, A. M., Inst. Conf. Ser. No. 67, 253 (1983).Google Scholar
[38] Papon, A. M. and Petit, M., Scripta Metall. 19, 391 (1985).Google Scholar
[39] Bourret, A. and Bacmann, J. J., Inst. Phys. Conf. Ser. No. 78, 337 (1985).Google Scholar
[40] Bourret, A., Billard, L. and Petit, M., Inst. Phys. Conf. Ser. No. 76, 23 (1985)Google Scholar
[41] Sutton, A. P. and Vitek, V., Phil. Trans. Royal Soc. A309, 37, 55, (1983).Google Scholar