Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:20:50.797Z Has data issue: false hasContentIssue false

Ab Initio Investigation of Grain Boundary Sliding

Published online by Cambridge University Press:  10 February 2011

M. C. Payne
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
G. P. Francis
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
C. Molteni
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
N. Marzari
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
V. Deyirmenjian
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
V. Heine
Affiliation:
Cavendish Laboratory - University of Cambridge, Madingley Road, CAMBRIDGE CB3 OHE (UK)
Get access

Abstract

We are using total energy pseudopotential calculations to carry out an extensive investigation into grain boundary sliding in a number of different systems, in order to understand, at microscopic level, the fundamental mechanisms responsible for this process.

In this paper we present results for the sliding process at the ∑ = 5(001) twist grain boundary in germanium, chosen as a typical covalently bonded material, and contrast them with preliminary results obtained for the ∑ = 5 (001) twist grain boundary in aluminium, a typical metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sutton, A.P. and Balluffi, R.W., “Interfaces in crystalline materials”, Oxford University Press (1995)Google Scholar
2. Payne, M.C., Bristowe, P.D. and Joannopoulos, J.D., Phys.Rev.Lett. 58, 1348 (1987)Google Scholar
3. Tarnow, E., Bristowe, P.D., Joannopoulos, J.D. and Payne, M.C., J. Phys.: Condens. Matter 1, 327 (1989)Google Scholar
4. Tarnow, E., Dallot, P., Bristowe, P.D., Joannopoulos, J.D., G.P.Francis and M.C.Payne, Phys. Rev. B 42, 3644 (1990)Google Scholar
5. Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970)Google Scholar
6. Molteni, C., Francis, G.P., Payne, M.C. and Heine, V., these proceedingsGoogle Scholar
7. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, J., Rev.Mod.Phys. 64, 1045 (1992)Google Scholar
8. Gillan, M.J., J.Phys.: Condens.Matter 1, 689 (1989)Google Scholar
9. Vita, A.De, Marzari, N., Payne, M.C. and Gillan, M.J., to be publishedGoogle Scholar
10. Arias, T.A. and Joannopoulos, J.D., Phys.Rev. B 49, 4525 (1994)Google Scholar
11. Pandey, K.C., Phys.Rev.Lett. 57, 2287 (1986)Google Scholar
12. Vogl, P., Hjalmarson, H.P. and Dow, J.D., J.Phys.Chem.Solids 44, 365 (1983)Google Scholar
13. Deyirmenjian, V., Heine, V., Payne, M.C., Milman, V., Lynden-Bell, R.M. and Finnis, M.W., submitted to Phys.Rev.B (1995)Google Scholar