Published online by Cambridge University Press: 25 February 2011
Low temperature Si processing techniques have been developed using remote plasma enhanced chemical vapor techniques. The 300° C in situ processes include indirectly excited hydrogen treatments for obtaining reconstructed Si(100) surfaces, Si/Si(100) homoepitaxy, and deposition of poly-Si/oxide/nitride/oxide/Si(100) structures with no capacitance-voltage hysteresis and low interface state density (4×1010cm−2eV−1). While all these processes have been accomplished with the same tool, the success of the in situ hydrogen treatment and the homoepitaxy are sensitive to the past history of the reactor. In particular, they are sensitive to by-products formed during the oxide deposition process. To eliminate these by-products, plasma conditioning of the chamber walls prior to introduction of the silicon wafer from the load lock has been necessary to obtain reproducible results.