Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-02T21:58:01.209Z Has data issue: false hasContentIssue false

Whisker-Reinforced Ceramic Matrix Composites

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Whisker-reinforced ceramic matrix composites have recently received a great deal of attention for applications as high temperature structural materials in, for example, advanced heat engines and high temperature energy conversion systems. For applications requiring mechanical reliability, the improvements that can be realized in fracture strength and fracture toughness are of great interest. Of particular importance for optimizing the mechanical reliability of these composites is the effect of the whisker/matrix interfacial characteristics on the strengthening and toughening mechanisms. Whisker reinforcements are primarily utilized to prevent catastrophic brittle failure by providing processes that dissipate energy during crack propagation. The degree of energy dissipation depends on the nature of the whisker/matrix interface, which can be controlled largely by the matrix chemistry, the whisker surface chemistry, and the processing parameters.

It is generally believed that a strong interfacial bond results in a composite exhibiting brittle behavior. These composites usually have good fracture strengths but low fracture toughnesses. If the interfacial bond is weak, the composite will not fail in a catastrophic manner due to the activation of various energy dissipation processes. These latter composites tend to have high fracture toughnesses and low fracture strengths. Generally, the interface should be strong enough to transfer the load from the matrix to the whiskers, but weak enough to fail preferentially prior to failure. Thus, local damage occurs without catastrophic failure. It is therefore necessary to control the interfacial chemistry and bonding in order to optimize the overall mechanical performance of the composites.

Type
Ceramics
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Becher, P.F. and Wei, G.C., J. Am. Ceram. Soc. 67 (12) (1984) p. C267C269.CrossRefGoogle Scholar
2.Wei, G.C. and Becher, P.F., Am. Ceram. Soc. Bull. 64 (2) (1985) p. 298304.Google Scholar
3.Becher, P.F., Tiegs, T.N., Ogle, J.C., and Warwick, W.H., in Fracture Mechanics of Ceramics, Vol. 7: Composites, Impact, Statistics, and High-Temperature Phenomena, edited by Bradt, R.C., Hasselman, D.P.H., Evans, A.G., and Lange, F.F. (Plenum, New York, 1986) p. 6173.CrossRefGoogle Scholar
4.Tiegs, T.N. and Becher, P.F., Am. Ceram. Soc. Bull. 66 (2) (1987) p. 339342.Google Scholar
5.Porter, J.R., Lange, F.F., and Chokshi, A.H., Am. Ceram. Soc. Bull. 66 (2) (1987) p. 343347.Google Scholar
6.Homeny, J., Vaughn, W.L., and Ferber, M.K., Am. Ceram. Soc. Bull. 66 (2) (1987) p. 333338.Google Scholar
7.Kriven, W.M., Tendeloo, G.V., Tiegs, T.N., and Becher, P.F., presented at Ceramic Microstructures '86: Role of Interfaces conference, Berkeley, CA (unpublished).Google Scholar
8.Tiegs, T.N. and Becher, P.F., J. Am. Ceram. Soc. 70 (5) (1987) p. C109C111.CrossRefGoogle Scholar
9.Chokshi, A.H. and Porter, J.R., J. Am. Ceram. Soc. 68 (6) (1985) p. C144C145.CrossRefGoogle Scholar
10.Samanta, S.C. and Musikant, S., Ceram Eng. and Sci. Proc. 6 (7-8) (1985) p. 663672.CrossRefGoogle Scholar
11.Panda, P.C. and Seydel, E.R., Am. Ceram. Soc. Bull. 65 (2) (1986) p. 338341.Google Scholar
12.Shalek, P.D., Petrovic, J.J., Hurley, G.F., and Gac, F.D., Am. Ceram. Soc. Bull. 65 (2) (1986) p. 351356.Google Scholar
13.Takao, F., Cannon, W.R., and Danforth, S.C., Ceram. Eng. and Sci. Proc. 7 (7-8) (1986) p. 990993.CrossRefGoogle Scholar
14.Lundberg, R., Kahlman, L., Pompe, R., and Carlsson, R., Am. Ceram. Soc. Bull. 66 (2) (1987) p. 330333.Google Scholar
15.Buljan, S.T., Baldoni, J.G., and Huckabee, M.L., Am. Ceram. Soc. Bull. 66 (2) (1987) p. 347352.Google Scholar
16.Gac, F.D. and Petrovic, J.J., J. Am. Ceram. Soc. 68 (8) (1985) p. C200C201.CrossRefGoogle Scholar
17.Carter, D.H. and Hurley, G.F., J. Am. Ceram. Soc. 70 (4) (1987) p. C79C81.CrossRefGoogle Scholar
18.Claussen, N., Weisskopf, K.L., and Ruhle, M., in Fracture Mechanics of Ceramics, Vol. 7: Composites, Impact, Statistics, and High-Temperature Phenomena, edited by Bradt, R.C., Hasselman, D.P.H., Evans, A.G., and Lange, F.F. (Plenum, New York, 1986) p. 7586.CrossRefGoogle Scholar
19.Gadkaree, K.P. and Chyung, K., Am. Ceram. Soc. Bull. 65 (2) (1986) p. 370376.Google Scholar
20.Rice, R.W., Ceram. Eng. and Sci. Proc. 2 (7-8) (1981) p. 661701.CrossRefGoogle Scholar
21.Rice, R.W., Ceram. Eng. and Sci. Proc. 6 (7-8) (1985) p. 589607.CrossRefGoogle Scholar
22.Rice, R.W., Chem. Tech. 4 (1983) p. 230239.Google Scholar
23.Shetty, D.K., Current Awareness Bulletin, Metals and Ceramics Information Center, Battelle Columbus Laboratories 118 (12) (1982).Google Scholar
24.Faber, K.T. and Evans, A.G., Acta. Metall. 31 (4) (1983) p. 565576.CrossRefGoogle Scholar
25.Faberand, K.T.Evans, A.G., Acta. Metall. 31 (4) (1983) p. 577584.Google Scholar
26.Kelly, A., Proc. Roy. Soc. Lond. A 319 (1970) p. 95116.Google Scholar
27.Jenkins, M.G., Kobayashi, A.S., White, K.W., and Bradt, R.C., J. Am. Ceram. Soc. 70 (6) (1987) p. 393395.CrossRefGoogle Scholar
28.Piggot, M.R., J. Mater. Sci. 5 (1970) p. 669675.CrossRefGoogle Scholar
29.Rahaman, M.N. and DeJonghe, L.C., J. Am. Ceram. Soc. 66 (5) (1987) p. 782785.Google Scholar
30.Handbook of X-ray Photoelectron Spectroscopy, edited by Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E. (Perkin-Elmer Corp., Eden Prairie, MN, 1978).Google Scholar