Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:29:20.911Z Has data issue: false hasContentIssue false

Ultralow Gradient HGF-Grown ZnGeP2 and CdGeAs2 and Their Optical Properties

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

ZnGeP2 and CdGeAs2 have long been recognized as promising crystals for infrared frequency generation. They exhibit the highest nonlinear optical coefficients (d36 equals 75 pm/V and 236 pm/V for ZnGeP2 and CdGeAs2, respectively) among all known compounds that possess adequate birefringence for phase matching. ZnGeP2's transparency range (0.62−13 μm) makes it the optimum material for shifting the wavelength of 2-μm pump lasers into the 3–5-μm range via optical parametric oscillation (OPO), whereas that of CdGeAs2 (2.3–18 μm) is better suited for doubling the frequency of CO2 lasers (9–11 μm) into the same range via second-harmonic generation. In both cases however, the application of these materials has been hindered by great difficulty in achieving crack-free single crystals, and by large defect-related absorption losses.

The horizontal-gradient-freeze (HGF) growth technique has been instrumental in overcoming these difficulties. “Ultralow” axial gradients (1–3°C/cm) have been used to control stoichiometry by minimizing vapor transport as well as to eliminate cracking due to anisotropic thermal expansion. (The a-axis and c-axis thermal-expansion coefficients of ZnGeP2 differ by a factor of two, whereas those of CdGeAs2 differ by a factor of 15.) In addition, oriented seeds were used to ensure monocrystalline nucleation (because even a small degree of polycrystallinity can lead to cracking even in low gradients) and growth along preferred directions to facilitate fabrication of device crystals. Finally growth was performed in a two-zone, transparent furnace in order to monitor and control the seeding-and-growth process.

Type
Emergence of Chalcopyrites as Nonlinear Optical Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boyd, G.D., Buehler, E., Storz, F.G., and Wernick, J.H., IEEE J. Quantum Electron. 8 (1972) p. 419.CrossRefGoogle Scholar
2.Byer, R.L., in Treatise in Quantum Electronics, edited by Rabin, H. and Tang, C.L. (Academic Press, New York, 1973) p. 587.Google Scholar
3.Shay, J.L. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, New York, 1975) p. 168.Google Scholar
4.Goryunova, N.A., Kesamanly, F.P., and Osmanov, E.O., Fiz. Tverd. Tela (Sov. Phys. Solid State) 5 (1963) p. 2031.Google Scholar
5.Borshchevsky, A.S., Goryunova, N.A., Kesamanly, F.P., and Nasledov, D.N., Phys. Status Solidi 21 (1967) p. 9.CrossRefGoogle Scholar
6.Kildal, H., PhD dissertation, Stanford University, 1972.Google Scholar
7.Gentile, A.L. and Stafsudd, O.M., Mater. Res. Bulletin 9 (1974) p. 105.CrossRefGoogle Scholar
8.Feigelson, R.S., Route, R.K., and Swarts, H.W., J. Cryst. Growth 28 (1975) p. 138.CrossRefGoogle Scholar
9.Iseler, G.W., Kildal, H., and Menyuk, N., J. Electron. Mater. 7 (1978) p. 737.CrossRefGoogle Scholar
10.Feigelson, R.S. and Route, R.K., J. Cryst. Growth 49 (1980) p. 261.CrossRefGoogle Scholar
11.Borshchevsky, A.S., Route, R.K., and Feigelson, R.S., Mater. Res. Bull. 15 (1980) p. 409.CrossRefGoogle Scholar
12.Masumoto, K., Isomura, S., and Goto, W., J. Phys. Chem. Solids 27 (1966) p. 1939.CrossRefGoogle Scholar
13.Mughal, S.A., Payne, A.J., and Ray, B., J. Mater. Sci. 4 (1969) p. 895.CrossRefGoogle Scholar
14.Ray, B., Payne, A.J., and Burnell, G.J., Phys. Status Solidi A 35 (1969) p. 197.CrossRefGoogle Scholar
15.Buehler, E. and Wernick, J.H., J. Cryst. Growth 8 (1971) p. 325.CrossRefGoogle Scholar
16.Buehler, E., Wernick, J.H., and Wiley, J.D., J. Electron. Mater. 2 (1973) p. 445.CrossRefGoogle Scholar
17.Bliss, D.F., Harris, M., Horrigan, J., Higgins, W.M., Armington, A.F., and Adamski, J.A., J. Cryst. Growth 137 (1994) p. 145.CrossRefGoogle Scholar
18.Hobgood, H.M., Henningsen, T., Thomas, R.N., Hopkins, R.H., Ohmer, M.C., Mitchel, W.C., Fischer, D.W., Hegde, S.M., and Hopkins, F.K., J. Appl. Phys. 73 (1993) p. 4030.CrossRefGoogle Scholar
19.Miller, A., Humphreys, R.G., and Chapman, B., J. Phys. 36 (1975) p. C3.Google Scholar
20.Schunemann, P.G. and Pollak, T.M., U.S. Patent No. 5,611,856 (March 18, 1997).Google Scholar
21.Schunemann, P.G., in Conf. on Lasers and Electro-Optics, 1996 OSA Technical Digest Ser., vol. 9 (Optical Society of America, Washington, DC, 1996) p. 230.Google Scholar
22.Pomeranz, L.A., Budni, P.A., Schunemann, P.G., Pollak, T.M., Ketteridge, P.A., Lee, I., and Chicklis, E.P., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 259.Google Scholar
23.Schunemann, P.G. and Pollak, T.M., J. Cryst. Growth 174 (1997) p. 272.CrossRefGoogle Scholar
24.Brudnyi, V.N., Budnitskii, D.L., Krivov, M.A., Masagutova, R.V., Prochukhan, V.D., and Rud', Yu.V., Phys. Status Solidi A 50 (1978) p. 379.CrossRefGoogle Scholar
25.Schunemann, P.G., Drevinsky, P.J., Ohmer, M.C., Mitchel, W.C., and Fernelius, N.C., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D.D., Luzzi, D.E., Heinz, T.F., and Iwaki, M. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, 1995) p. 729.Google Scholar
26.Schunemann, P.G., Drevinsky, P.J., and Ohmer, M.C., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D.D., Luzzi, D.E., Heinz, T.F., and Iwaki, M. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, 1995) p. 579.Google Scholar
27.Rakowsky, M.H., Kuhn, W.K., Lauderdale, W.J., Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Schunemann, P.G., Pollak, T.M., Ohmer, M.C., and Hopkins, F.K., Appl. Phys. Lett. 64 (13) (1994) p. 1615.CrossRefGoogle Scholar
28.Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Rakowsky, M.H., Schunemann, P.G., and Pollak, T.M., Appl. Phys. Lett. 66 (20) (1995) p. 2670.CrossRefGoogle Scholar
29.Giles, N.C., Halliburton, L.E., and Schunemann, P.G., in Proc. SPIE Photonics West '95, Solid State Lasers and Nonlinear Crystals, vol. 2379 (Society of Photo-Instrumentation Engineers, 1995) p. 175.CrossRefGoogle Scholar
30.Halliburton, LE., Edwards, G.J., Schunemann, P.G., and Pollak, T.M., J. Appl. Phys. 77 (1995) p. 435.CrossRefGoogle Scholar
31.Budni, P.A., Schunemann, P.G., Knights, M.G., Pollak, T.M., and Chicklis, E.P., in OSA Proceedings on Advanced Solid-State Lasers, Vol. 13, edited by Chase, L. and Pinto, A. (Optical Society of America, Washington, DC 1992) p. 380.Google Scholar
32.Knights, M.G., Budni, P.A., Schunemann, P.G., Pollak, T.M., and Chicklis, E.P., in Advanced Solid State Lasers, Technical Digest, 1994 (Optical Society of America, Washington, DC (1994) p. 259.Google Scholar
33.Schunemann, P.G., Budni, P.A., Pomeranz, L.A., Knights, M.G., Pollak, T.M., and Chicklis, E.P., in Trends in Optics and Photonics, vol. 10, edited by Pollock, C.R. and Bosenberg, W.R. (Optical Society of America, Washington, DC, 1997) p. 253.Google Scholar
34.Halliburton, L.E., Edwards, G.J., Schunemann, P.G., and Pollak, T., J. Appl. Phys. 77 (1995) p. 435.CrossRefGoogle Scholar