Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T01:32:55.302Z Has data issue: false hasContentIssue false

Phase change materials

Published online by Cambridge University Press:  17 February 2012

Simone Raoux
Affiliation:
IBM T.J. Watson Research Center; [email protected]
Daniele Ielmini
Affiliation:
Dipartimento di Elettronica e Informazione and IUNET, Politecnico di Milano; [email protected]
Matthias Wuttig
Affiliation:
I. Physikalisches Institut (IA), RWTH Aachen University; [email protected]
Ilya Karpov
Affiliation:
Intel Corporation; [email protected]
Get access

Abstract

Phase change materials can be switched rapidly and repeatedly between amorphous and crystalline phases, which differ distinctly in their optical and electrical properties. This combination of properties is utilized to store information in rewritable optical storage media and in emerging phase change memory technology. This article describes the physical properties of phase change materials such as Ge2Sb2Te5 and relates these properties to specific structural and bonding characteristics. Electrical conduction and switching, which are relevant for phase change memory operation, are explained from a physical perspective. Phase change memory device integration and technology development are discussed, including aspects of access device selection and integration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ovshinsky, S., Phys. Rev. Lett. 22, 1450 (1968).Google Scholar
2.Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takao, M., Jpn. J. Appl. Phys. 26 (Suppl. 26–4), 61 (1987).CrossRefGoogle Scholar
3.Bruns, G., Merkelbach, P., Schlockerman, C., Salinga, M., Wuttig, M., Happ, T.D., Philipp, J.B., Kund, M., Appl. Phys. Lett. 95, 043108 (2009).Google Scholar
4.Lencer, D., Salinga, M., Wuttig, M., Adv. Mater. 23, 2030 (2011).CrossRefGoogle Scholar
5.Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., Wuttig, M., Nat. Mater. 7, 653 (2008).Google Scholar
6.Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M., Nat. Mater. 7, 972 (2008).Google Scholar
7.Huang, B., Robertson, J., Phys. Rev. B 81, 1204 (2010).Google Scholar
8.Kolobov, A., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
9.Akola, J., Jones, R., Phys. Rev. B 76, 1 (2007).CrossRefGoogle Scholar
10.Yamada, N., Matsunaga, T., J. Appl. Phys. 88, 7020 (2000).CrossRefGoogle Scholar
11.Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., Nature Mater. 10, 202 (2011).Google Scholar
12.Yamada, N., Kojima, R., Uno, M., Akiyama, T., Kitaura, H., Narumi, K., Nishiutchi, K., Proc. SPIE 4342, 55 (2002).CrossRefGoogle Scholar
13.Ielmini, D., Zhang, Y., J. Appl. Phys. 102, 054517 (2007).CrossRefGoogle Scholar
14.Adler, D., Shur, M.S., Silver, M., Ovshinsky, S.R., J. Appl. Phys. 51, 3289 (1980).Google Scholar
15.Emin, D., Phys. Rev. B 74, 035206 (2006).CrossRefGoogle Scholar
16.Karpov, V.G., Kryukov, Y.A., Savransky, S.D., Karpov, I.V., Appl. Phys. Lett. 90, 123504 (2007).CrossRefGoogle Scholar
17.Ielmini, D., Phys. Rev. B 78, 035308 (2008).CrossRefGoogle Scholar
18.Lee, S., Jeong, D.S., Jeong, J.-H., Zhe, W., Park, Y.-W., Ahn, H.-W., Cheong, B.-K., Appl. Phys. Lett. 96, 023501 (2010).CrossRefGoogle Scholar
19.Raoux, S., Shelby, R.M., Jordan-Sweet, J., Munoz, B., Salinga, M., Chen, Y.-C., Shih, Y.-H., Lai, E.-K., Lee, M.-H., Microelectron. Eng. 85, 2330 (2008).CrossRefGoogle Scholar
20.Caldwell, M.A., Raoux, S., Wang, R.Y., Wong, H.-S.P., Milliron, D.J., J. Mater. Chem. 20, 1285 (2010).CrossRefGoogle Scholar
21.Lee, S.-H., Jung, Y., Agarwal, R., Nat. Nanotechnol. 2, 626 (2007).Google Scholar
22.Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R., Lam, C., IEDM Tech. Dig. (San Francisco, CA, December 2006), p. 777.Google Scholar
23.Jung, Y., Nam, S.-W., Agarwal, R., Nano Lett. 11, 1364 (2011).CrossRefGoogle Scholar
24.Bedeschi, F., Bez, R., Boffino, C., Bonizzoni, E., Buda, E.C., Casagrande, G., Costa, L., Ferraro, M., Gastaldi, R., Khouri, O., Ottogalli, F., Pellizzer, F., Pirovano, A., Resta, C., Torelli, G., Tosi, M., IEEE J. Solid-State Circuits 40, 1557 (2005).CrossRefGoogle Scholar
25.Oh, J.H., Park, J.H., Lim, Y.S., Lim, H.S., Oh, Y.T., Kim, J.S., Shin, J.M., Park, J.H., Song, Y.J., Ryoo, K.C., Lim, D.W., Park, S.S., Kim, J.I., Kim, J.H., Yu, J., Yeung, F., Jeong, C.W., Kong, J.H., Kang, D.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K., IEDM Tech. Dig. (IEEE 2006), p. 49.Google Scholar
26.Servalli, G., IEDM Tech. Dig. (IEEE 2009), p. 113.Google Scholar
27.Sasago, Y., Kinoshita, M., Morikawa, T., Kurotsuchi, K., Hanzawa, S., Mine, T., Shima, A., Fujisaki, Y., Kume, H., Moriya, H., Takaura, N., Torii, K., Proc. Symp. VLSI Technol. (IEEE, 2009), p. 24.Google Scholar
28.Lee, M., Park, Y., Kang, B., Ahn, S., Lee, C., Kim, K., Xianyu, W., Stefanovich, G., Lee, J., Chung, S., Kim, Y., Lee, C., Park, J., Yoo, I., IEDM Tech. Dig. (IEEE, 2007), p. 771.Google Scholar
29.Tallarida, G., Huby, N., Kutrzeba-Kotowska, B., Spiga, S., Arcari, M., Csaba, G., Lugli, P., Redaelli, A., Bez, R., Proc. IEEE Int. Memory Workshop (IEEE, 2009), p. 6.Google Scholar
30.Gopalakrishnan, K., Shenoy, R.S., Rettner, C.T., Virwani, K., Bethune, D.S., Shelby, R.M., Burr, G.W., Kellock, A., King, R.S., Nguyen, K., Bowers, A.N., Jurich, M., Jackson, B., Friz, A.M., Topuria, T., Rice, P.M., Kurdi, B.N., Proc. Symp. VLSI Technol. (IEEE 2010), p. 205.Google Scholar
31.Kau, D., Tang, S., Karpov, I., Dodge, R., Klehn, B., Kalb, J., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H., Spadini, G., IEDM Tech. Dig. (IEEE, 2009), p. 617.Google Scholar
32.Simon, M., Nardone, M., Kostylev, S., Karpov, I., Karpov, V., Mater. Res. Soc. Symp. Proc. (MRS, 2010), p. 1251-H01-11.Google Scholar
33.Karpov, I., Mitra, M., Kau, D., Spadini, G., Kryukov, Y., Karpov, V., J. Appl. Phys. 102, 124503 (2007).Google Scholar
34.Lee, S., Karpov, I., Spadini, G., Eur. Phase Change Ovonics Sci. Symp. (Milano, Italy, 2010).Google Scholar
35.Karpov, I., Kau, D., Spadini, G., Karpov, V., 9th Non-Volatile Memory Technology Symposium (NVMTS) (IEEE, 2008), p. 1.Google Scholar