Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T11:05:05.108Z Has data issue: false hasContentIssue false

Oxynitride materials for solar water splitting

Published online by Cambridge University Press:  17 January 2011

Kazuhiko Maeda
Affiliation:
University of Tokyo, Japan, [email protected]
Kazunari Domen
Affiliation:
University of Tokyo, Japan, [email protected]
Get access

Abstract

Water splitting to form hydrogen and oxygen over a heterogeneous photocatalyst using solar energy is a promising process for clean and renewable hydrogen production. In recent years, numerous attempts have been made for the development of photocatalysts that work under visible light irradiation to efficiently utilize solar energy. This article reviews recent research progress in the development of visible light-driven photocatalysts, focusing on the refinement of oxynitride materials. They harvest visible photons (~450–700 nm) and work as stable photocatalysts for water reduction and oxidation under visible light. Oxynitrides with d0 electronic configuration can be successfully applied to a two-step water-splitting system, which can harvest a wide range of visible photons (~660 nm), in the presence of an iodate/iodide shuttle redox mediator. Also d10-type oxynitrides of GaN–ZnO and ZnGeN2–ZnO solid solutions can achieve functionality as photocatalysts for overall water-splitting under visible light without noticeable degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W., Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
2.Fujishima, A., Rao, T.N., Tryk, D.A., J. Photochem. Photobiol. C 1, 1 (2000).CrossRefGoogle Scholar
3.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Science 293, 269 (2001).CrossRefGoogle Scholar
4.Fujishima, A., Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
5.Domen, K., Kondo, J.N., Hara, M., Takata, T., Bull. Chem. Soc. Jpn. 73, 1307 (2000).CrossRefGoogle Scholar
6.Maeda, K., Domen, K., J. Phys. Chem. C 111, 7851 (2007).CrossRefGoogle Scholar
7.Osterloh, F.E., Chem. Mater. 20, 35 (2008).CrossRefGoogle Scholar
8.Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253 (2009).CrossRefGoogle Scholar
9.Inoue, Y., Energy Environ. Sci. 2, 364 (2009).CrossRefGoogle Scholar
10.Williams, R., J. Chem. Phys. 32, 1505 (1960).CrossRefGoogle Scholar
11.Ellis, A.B., Kaiser, S.W., Bolts, J.M., Wrighton, M.S., J. Am. Chem. Soc. 99, 2839 (1977).CrossRefGoogle Scholar
12.Scaife, D.E., Solar Energy 25, 41 (1980).CrossRefGoogle Scholar
13.Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Chem. Commun. 1698 (2002).CrossRefGoogle Scholar
14.Hitoki, G., Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K., Chem. Lett. 31, 736 (2002).CrossRefGoogle Scholar
15.Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Electrochem. 70, 463 (2002).CrossRefGoogle Scholar
16.Kasahara, A., Nukumizu, K., Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., J. Phys. Chem. A 106, 6750 (2002).CrossRefGoogle Scholar
17.Chun, W.-A., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J.N., Hara, M., Kawai, M., Matsumoto, Y., Domen, K., J. Phys. Chem. B 107, 1798 (2003).CrossRefGoogle Scholar
18.Nukumizu, K., Nunoshige, J., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Chem. Lett. 32, 196 (2003).CrossRefGoogle Scholar
19.Yamasita, D., Takata, T., Hara, M., Kondo, J.N., Domen, K., Solid State Ionics 172, 591 (2004).CrossRefGoogle Scholar
20.Maeda, K., Shimodaira, Y., Lee, B., Teramura, K., Lu, D., Kobayashi, H., Domen, K., J. Phys. Chem. C 111, 18264 (2007).CrossRefGoogle Scholar
21.Maeda, K., Terashima, H., Kase, K., Domen, K., Appl. Catal., A 357, 206 (2009).CrossRefGoogle Scholar
22.Maeda, K., Nishimura, N., Domen, K., Appl. Catal., A 370, 88 (2009).CrossRefGoogle Scholar
23.Yuliati, L., Yang, J.-H., Wang, X., Maeda, K., Takata, T., Antonietti, M., Domen, K., J. Mater. Chem. 20, 4295 (2010).CrossRefGoogle Scholar
24.Maeda, K., Terashima, H., Kase, K., Higashi, M., Tabata, M., Domen, K., Bull. Chem. Soc. Jpn. 81, 927 (2008).CrossRefGoogle Scholar
25.Maeda, K., Higashi, M., Lu, D., Abe, R., Domen, K., J. Am. Chem. Soc. 132, 5858 (2010).CrossRefGoogle Scholar
26.Abe, R., Takata, T., Sugihara, H., Domen, K., Chem. Commun. 3829 (2005).CrossRefGoogle Scholar
27.Higashi, M., Abe, R., Teramura, K., Takata, T., Ohtani, B., Domen, K., Chem. Phys. Lett. 452, 120 (2008).CrossRefGoogle Scholar
28.Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K., Chem. Lett. 37, 138 (2008).CrossRefGoogle Scholar
29.Tabata, M., Maeda, K., Higashi, M., Lu, D., Takata, T., Abe, R., Domen, K., Langmuir 26, 9161 (2010).CrossRefGoogle Scholar
30.Tessier, F., Marchand, R., J. Alloys Compd. 262263, 410 (1997).CrossRefGoogle Scholar
31.Jansen, M., Letschert, H.P., Nature 404, 980 (2000).CrossRefGoogle Scholar
32.Marchand, R., Tessiera, F., DiSalvob, F.J., J. Mater. Chem. 9, 297 (1999).CrossRefGoogle Scholar
33.Zhang, Q., Gao, L., Langmuir 20, 9821 (2004).CrossRefGoogle ScholarPubMed
34.Ito, S., Thampi, K.R., Comte, P., Liska, P., Grätzel, M., Chem. Commun. 268 (2005).CrossRefGoogle Scholar
35.Mishima, T., Matsuda, M., Miyake, M., Appl. Catal., A 324, 77 (2007).CrossRefGoogle Scholar
36.Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M., Nat. Mater. 8, 76 (2009).CrossRefGoogle Scholar
37.Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y., Fu, X., Antonietti, M., J. Am. Chem. Soc. 131, 1680 (2009).CrossRefGoogle Scholar
38.Goettmann, F., Fischer, A., Antonietti, M., Thomas, A., Angew. Chem., Int. Ed. 45, 4467 (2006).CrossRefGoogle Scholar
39.Sayama, K., Arakawa, H., Domen, K., Catal. Today 28, 175 (1996).CrossRefGoogle Scholar
40.Kominami, H., Murakami, S., Kera, Y., Ohtani, B., Catal. Lett. 56, 125 (1998).CrossRefGoogle Scholar
41.Abe, R., Takata, T., Sugihara, H., Domen, K., Chem. Lett. 34, 1162 (2005).CrossRefGoogle Scholar
42.Nakamura, R., Tanaka, T., Nakato, Y., J. Phys. Chem. B 109, 8920 (2005).CrossRefGoogle Scholar
43.Feng, X., LaTempa, T.J., Basham, J.I., Mor, G.K., Varghese, O.K., Grimes, C.A., Nano Lett. 10, 948 (2010).CrossRefGoogle Scholar
44.Abe, R., Higashi, M., Domen, K., J. Am. Chem. Soc. 132, 11828 (2010).CrossRefGoogle Scholar
45.Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K., Inoue, Y., J. Am. Chem. Soc. 127, 4150 (2005).CrossRefGoogle Scholar
46.Lee, Y., Watanabe, T., Takata, T., Hara, M., Yoshimura, M., Domen, K., J. Phys. Chem. B 110, 17563 (2006).CrossRefGoogle Scholar
47.Maeda, K., Saito, N., Lu, D., Inoue, Y., Domen, K., J. Phys. Chem. C 111, 4749 (2007).CrossRefGoogle Scholar
48.Maeda, K., Saito, N., Inoue, Y., Domen, K., Chem. Mater. 19, 4092 (2007).CrossRefGoogle Scholar
49.Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., Domen, K., J. Am. Chem. Soc. 127, 8286 (2005).CrossRefGoogle Scholar
50.Maeda, K., Teramura, K., Takata, T., Hara, M., Saito, N., Toda, K., Inoue, Y., Kobayashi, H., Domen, K., J. Phys. Chem. B 109, 20504 (2005).CrossRefGoogle Scholar
51.Maeda, K., Domen, K., Chem. Mater. 22, 612 (2010).CrossRefGoogle Scholar
52.Yashima, M., Maeda, K., Teramura, K., Takata, T., Domen, K., Chem. Phys. Lett. 416, 225 (2005).CrossRefGoogle Scholar
53.Hirai, T., Maeda, K., Yoshida, M., Kubota, J., Ikeda, S., Matsumura, M., Domen, K., J. Phys. Chem. C 111, 18853 (2007).CrossRefGoogle Scholar
54.Jensen, L.L., Muckerman, J.T., Newton, M.D., J. Phys. Chem. C 112, 3439 (2008).CrossRefGoogle Scholar
55.Wei, W., Dai, Y., Yang, K., Guo, M., Huang, B., J. Phys. Chem. C 112, 15915 (2008).CrossRefGoogle Scholar
56.Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., Domen, K., Nature 440, 295 (2006).CrossRefGoogle Scholar
57.Maeda, K., Teramura, K., Saito, N., Inoue, Y., Domen, K., J. Catal. 243, 303 (2006).CrossRefGoogle Scholar
58.Maeda, K., Teramura, K., Masuda, H., Takata, T., Saito, N., Inoue, Y., Domen, K., J. Phys. Chem. B 110, 13107 (2006).CrossRefGoogle Scholar
59.Lee, Y., Terashima, H., Shimodaira, Y., Teramura, K., Hara, M., Kobayashi, H., Domen, K., Yashima, M., J. Phys. Chem. C 111, 1042 (2007).CrossRefGoogle Scholar
60.Lee, Y., Teramura, K., Hara, M., Domen, K., Chem. Mater. 19, 2120 (2007).CrossRefGoogle Scholar
61.Misaki, T., Wu, X., Wakahara, A., Yoshida, A., Proc. Int. Workshop Nitride Semiconductors IPAP Conf. Series 1 685 (2000).Google Scholar