Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T02:52:40.661Z Has data issue: false hasContentIssue false

Organometallic Vapor Phase Epitaxy: Features, Problems, New Approaches

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Modern compound semiconductor devices are usually fabricated in one or more layers of single-crystal material, which are epitaxially grown on a crystalline substrate. Since most of these semiconductors decompose into their constituent components at high temperature, epitaxial growth in its simplest form can be accomplished by transporting individual components to a heated substrate, where they react to form the compound semiconductor. This is the basis of molecular beam epitaxy (MBE), where the process is carried out in an ultrahigh vacuum environment.

Growth of these materials in an atmospheric (or reduced pressure) environment is highly advantageous from a commercial point of view. However, this presents a problem, since one of the components usually has a very low vapor pressure. For III-V compounds such as GaAs, AlAs, InAs, and InP, this is the column III component. Consequently, a technique must be provided to transport these elements by means of volatile compounds. This process is known as chemical vapor epitaxy, with halogenic compounds often used as transport agents. One example of this approach is the growth of GaAs from GaCl and AsCl3. During growth, the AsCl3 is made to prereact with gallium to form volatile GaCl, which is stable at elevated temperatures and can be transported to the substrate. High quality GaAs can be made by this process, and it is widely used for making a number of GaAs devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E.H.C. (Plenum Press, New York, 1985).CrossRefGoogle Scholar
2.Knight, J.R., Effer, D. and Evans, P.R., Solid State Electron. 8 (1965) p. 178.CrossRefGoogle Scholar
3.Manasevit, H.M., Appt. Phys. Lett. 12 (1968) p. 158.CrossRefGoogle Scholar
4.Manasevit, H.M. and Simpson, W.I., J. Electrochem. Soc. 116 (1969) p. 1725.CrossRefGoogle Scholar
5.Stringfellow, G.B., J. Electron. Mater. 17 (1988) p. 327.CrossRefGoogle Scholar
6.Manasevit, H.M., J. Electrochem. Soc. 118 (1971) p. 647.CrossRefGoogle Scholar
7.Baliga, B.J. and Ghandhi, S.K., J. Cryst. Growth 26 (1974) p. 314.CrossRefGoogle Scholar
8.Irvine, S.J. and Mullin, J.B., J. Cryst. Growth 55 (1981) p. 107.CrossRefGoogle Scholar
9.Ghandhi, S.K. and Bhat, I.B., Appl. Phys. Lett. 44 (1984) p. 779.CrossRefGoogle Scholar
10.Hoke, W.E., Lemonias, P.J., and Taczewski, R., Appl. Phys. Lett. 45 (1984) p. 1092.CrossRefGoogle Scholar
11.Ban, V.S., J. Cryst. Growth 45 (1978) p. 97.CrossRefGoogle Scholar
12.Ghandhi, S.K. and Field, R.J., J. Cryst. Growth 69 (1984) p. 619.CrossRefGoogle Scholar
13.Van de Ven, J., Rutten, G.M.J., Radijarakers, J.J., and Giling, L.J., J. Cryst. Growth 76 (1986) p. 352.CrossRefGoogle Scholar
14.Moffat, H. and Jensen, K.F., J. Cryst. Growth 77 (1986) p. 108.CrossRefGoogle Scholar
15.Houtman, C., Graves, D.B., and Jensen, K.F., J. Electrochem. Soc. 133 (1986) p. 961.CrossRefGoogle Scholar
16.Chinoy, P.B., Agnello, P.D., and Ghandhi, S.K., J, Electron. Mater, (accepted for publication).Google Scholar
17.Moffat, H.K., Keuch, T.F., Jensen, K.F., and Wang, P.J., J. Cryst. Growth (to be published).Google Scholar
18.Field, R.J. and Ghandhi, S.K., J. Cryst. Growth 69 (1984) p. 581.CrossRefGoogle Scholar
19.Reep, D.H. and Ghandhi, S.K., J. Electrochem. Soc. 130 (1983) p. 675.CrossRefGoogle Scholar
20.Shaw, D.W., in Crystal Growth, Vol. I, edited by Goodman, C.H.L. (Plenum Press, New York, 1974) p. 1.Google Scholar
21.Jacko, M.G. and Price, S.J.W., Can. J. Chem. 41 (1963) p. 1560.CrossRefGoogle Scholar
22.Tamaru, K., J. Phys. Chem. 59 (1955) p. 777.CrossRefGoogle Scholar
23.Schlyer, D.J. and Ring, M.A., J. Organomet. Chem. 114 (1976) p. 9.CrossRefGoogle Scholar
24.Keuch, T.F. and Veuhoff, E., J. Cryst. Growth 68 (1984) p. 148.CrossRefGoogle Scholar
25.Arens, G., Heyen, M., Luth, H., and Balk, P., Thin Solid Films 136 (1986) p. 281.CrossRefGoogle Scholar
26.Keuch, T.F. and Potemski, R., Appl. Phys. Lett. 47 (1985) p. 821.CrossRefGoogle Scholar
27.Agnello, P.D. and Ghandhi, S.K., Solar Cells 24 (1988) p. 117.CrossRefGoogle Scholar
28.Manasevit, H.M. and Simpson, W.I., J. Electrochem. Soc. 120 (1973) p. 135.CrossRefGoogle Scholar
29.Saxena, R., Sardi, V., Oberstar, J., Hodge, L., Keever, M., Trott, G., Chen, K.L., and Moon, R., J. Cryst. Growth 77 (1986) p. 591.CrossRefGoogle Scholar
30.Whiteley, J.S. and Ghandhi, S.K., J. Electrochem. Soc. 129 (1982) p. 383.CrossRefGoogle Scholar
31.Baliga, B.J. and Ghandhi, S.K., J. Electrochem. Soc. 122 (1975) p. 683.CrossRefGoogle Scholar
32.Ludowise, M.J., Cooper, C.B. III, and Saxena, R.R., J. Electron Mater. 10 (1982) p. 1051.CrossRefGoogle Scholar
33.Mircea, A., Azoulay, R., Dugrand, L., Mellet, R., Rao, K., and Sacilotti, M., J. Electron. Mater. 12 (1984) p. 603.CrossRefGoogle Scholar
34.Donahue, T.J. and Reif, R., J. Appl. Phys. 57 (1985) p. 2757.CrossRefGoogle Scholar
35.Pande, K.P. and Aina, O., J. Vac. Sci. Technol. A 4 (1986) p. 673.CrossRefGoogle Scholar
36.Pande, K.P. and Seabough, A.C., J. Electrochem. Soc. 131 (1984) p. 1357.CrossRefGoogle Scholar
37.Heinecke, H., Brauers, P., Luth, H., and Balk, P., J. Cryst. Growth 77 (1986) p. 241.CrossRefGoogle Scholar
38.Hess, D.W., Ann. Rev. Mater. Sci. 16 (1986) p. 163.CrossRefGoogle Scholar
39.Williams, L.M., Lu, P.Y., Wang, C.H., Parsey, J.M., and Chu, S.N.G., Appl. Phys. Lett. 23 (1987) p. 1738.CrossRefGoogle Scholar
40.Oda, S., Kawase, R., Sato, T., Shimizu, I., and Kokado, H., Appl. Phys. Lett. 48 (1986) p. 33.CrossRefGoogle Scholar
41.Segui, Y., Carrere, F., and Bui, A., Thin Solid Films 92 (1982) p. 303.CrossRefGoogle Scholar
42.Kukimoto, H., Ban, Y., Komatsu, H., Takechi, M., and Ishizaki, M., J. Cryst. Growth 77 (1986) p. 223.CrossRefGoogle Scholar
43.Bedair, S.M., Whisnant, J.K., Karam, N.H., Griffis, D., El-Masry, N.A., and Stadelmaier, H.H., J. Cryst. Growth 77 (1986) p. 229.CrossRefGoogle Scholar
44.Roth, W., Schumacher, H., Beneking, H., Electron. Lett. 19 (1983) p. 142.CrossRefGoogle Scholar
45.Balk, P., Fischer, M., Grundmann, D., Luckerath, R., Luth, H., and Richter, W., J. Vac. Sci. Technol. B 5 (1987) p. 1453.CrossRefGoogle Scholar
46.Irvine, S.J.C., CRC Critical Reviews in Solid State and Materials Science 13 (1987) p. 279.CrossRefGoogle Scholar
47.Jones, K.A., Solid State Technol. 28 (1985) p. 151.Google Scholar
48.Fraas, L.M., McLeod, P.S., Partain, L.D., and Cape, J.A., J. Vac. Sci. Technol. B 4 (1986) p. 22.CrossRefGoogle Scholar
49.Tsang, W.T., J. Appl. Phys. 58 (1985) p. 1415.CrossRefGoogle Scholar
50.Veuhoff, E., Pletschen, W., Balk, P., and Luth, H., J. Cryst. Growth 55 (1981) p. 30.CrossRefGoogle Scholar