Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:28:48.940Z Has data issue: false hasContentIssue false

Nanoscale Scanning Force Imaging of Polarization Phenomena in Ferroelectric Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The science and technology of ferroelectric thin films is currently attracting worldwide attention because of its application to a new generation of novel devices. Prime, among these applications are nonvolatile ferroelectric random-access memories (NVFRAMs), which have high speed and extended endurance. The core of an NVFRAM is a capacitor with a ferroelectric film sandwiched between two electrode layers. The polarization of the ferroelectric layer in two possible opposite directions, upon application of an electric field between the two electrodes, provides the logic “1” and “0” states needed for binary-code memory. In spite of the advances in the science and technology of ferroelectric thin films and their integration into ferroelectric capacitors, some materials-related integration strategies as well as manufacturability issues have delayed commercialization of NVFRAMs. High-density memories require storage elements that approach submicron lateral dimensions. Thus, improved understanding of the materials properties and polarization phenomena is needed in conjunction with the development of new characterization tools that can enable such an understanding. For example, a fundamental issue in ferroelectric thin-film capacitors is the exact nature of the complex domain structure in the polarizable ferroelectric layer and its dynamics under high-speed switching conditions. The miniaturization of NVFRAMs requires understanding of granularity in polarization reversal dynamics, fatigue, and retention characteristics. In this respect, theoretical models and electrical measurements (e.g., polarization hysteresis loops and transient currents) have provided substantial insights into the nature of the switching processes. However, the models (phenomenological in nature) and the electrical measurements provide only a global or macroscopic view of the switching process.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Esaki, H., Integrated Ferroelectrics 14 (1997) p. 11.CrossRefGoogle Scholar
2.Saurenbach, F. and Terris, B.D., Appl. Phys. Lett. 56 (1990) p. 1703.CrossRefGoogle Scholar
3.Luthi, R., Haefke, H., Meyer, K-P., Meyer, E., Howald, L., and Guntherodt, H-J., J. Appl. Phys. 74 (1993) p. 7461.CrossRefGoogle Scholar
4.Correira, A., Massanell, J., Garcia, N., Levanyuk, A.P., Zlatkin, A., and Przeslawski, J., Appl. Phys. Lett. 68 (1996) p. 2796.CrossRefGoogle Scholar
5.Franke, K., Besold, J., Haessler, V.V., and Seegebarth, C., Surf. Sci. Lett. 302 (1994) p. L283.CrossRefGoogle Scholar
6.Gruverman, A., Auciello, O., and Tokumoto, H., Appl. Phys. Lett. 69 (1996) p. 3191.CrossRefGoogle Scholar
7.Gruverman, A., Auciello, O., Ramesh, R., and Tokumoto, H., Nanotechnology 8 (1997) p. A38.CrossRefGoogle Scholar
8.Eng, L.M., Friedrich, M., Fousek, J., and Gunter, P., J. Vac. Sci. Technol. B 14 (1996) p. 1191.CrossRefGoogle Scholar
9.Stern, J.E., Terris, B.D., Mamin, H.J., and Rugar, D., Appl. Phys. Lett. 55 (1989) p. 318.Google Scholar
10.Martin, Y., Abraham, D.W., and Wickramasinghe, H.K., Appl. Phys. Lett. 52 (1988) p. 1103.CrossRefGoogle Scholar
11.Nakatani, N., Jpn. J. Appl. Phys. 18 (1979) p. 491.CrossRefGoogle Scholar
12.Shur, V.Ya., Subbotin, A.L., and Kuminov, V.P., Ferroelectrics 140 (1993) p. 101.CrossRefGoogle Scholar
13.Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon Press, Oxford, 1977).Google Scholar
14.Bluhm, H., Schwarz, U.D., Meyer, K-P., and Wiesendanger, R., J. Vac. Sci. Technol. B 14 (1996) p. 1180.CrossRefGoogle Scholar
15.Gruverman, A., Auciello, O., and Tokumoto, H., Integrated Ferroelectrics in press.Google Scholar
16.Birk, H., Glatz-Reichenbach, J., Li-Jie, , Schreck, E., and Dransfeld, K., J. Vac. Sci. Technol. B 9 (1990) p. 1162.CrossRefGoogle Scholar
17.Guthner, P. and Dransfeld, K., Appl. Phys. Lett. 61 (1992) p. 1137.CrossRefGoogle Scholar
18.Franke, K. and Weihnacht, M., Ferroelectric Lett. 19 (1995) p. 25.CrossRefGoogle Scholar
19.Gruverman, A., Auciello, O., and Tokumoto, H., J. Vac. Sci. Technol. B 14 (1996) p. 602.CrossRefGoogle Scholar
20.Auciello, O., Gruverman, A., and Tokumoto, H., Integrated Ferroelectrics 15 (1997) p. 107.CrossRefGoogle Scholar
21.Gruverman, A., Auciello, O., Hatano, J., and Tokumoto, H., Ferroelectrics 184 (1996) p. 11.CrossRefGoogle Scholar
22.Luthi, R., Haefke, H., Gutmannsbauer, W., Meyer, E., Howald, L., and Guntherodt, H-J., J. Vac. Sci. Technol. B 12 (1994) p. 2451.CrossRefGoogle Scholar
23.Haefke, H., Luthi, R., Meyer, K-P., and Guntherodt, H-J., Ferroelectrics 151 (1994) p. 143.CrossRefGoogle Scholar
24.Gruverman, A., Hatano, J., and Tokumoto, H., Jpn. J. Appl. Phys. 36 (1997) p. 2207.CrossRefGoogle Scholar
25.Hase, T. and Shiosaki, T., Jpn. J. Appl. Phys. 30 (1991) p. 2159.CrossRefGoogle Scholar
26.Scott, J.F., de Araujo, C.A. Paz, and Melnick, B.M., J. Alloys Compounds 211 (1994) p. 451.CrossRefGoogle Scholar
27.Scott, J.F., de Araujo, C.A. Paz, Meadows, H.B., McMillan, L.D., and Shawabkeh, A., J. Appl. Phys. 66 (1989) p. 1444.CrossRefGoogle Scholar
28.Nasby, R., Schwank, J., Rodgers, M., and Miller, S., Integrated Ferroelectrics 2 (1992) p. 91.CrossRefGoogle Scholar
29.Gruverman, A., Prakash, A.S., Aggarwal, S., Yang, B., Wuttig, M., Tokumoto, H., Auciello, O., Venkatesan, T., and Ramesh, R., Appl. Phys. Lett in press.Google Scholar
30.Auciello, O., Gruverman, A., and Tokumoto, H. (unpublished manuscript).Google Scholar
31.Chamberlain, R.V., Mozurkewich, G., and Orbach, R., Phys. Rev. Lett. 52 (1984) p. 867.CrossRefGoogle Scholar
32.Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., and Schwartz, R.W., J. Appl. Phys. 77 (1995) p. 6695.CrossRefGoogle Scholar