Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T01:50:41.277Z Has data issue: false hasContentIssue false

Mechanics of Ultra-Strength Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recent experiments on nanoscale materials, including nanowires, nanopillars, nanoparticles, nanolayers, and nanocrystals, have revealed a host of “ultra-strength” phenomena, defined by stresses in the material generally rising up to a significant fraction of the ideal strength—the highest achievable strength of a defect-free crystal. This article presents an overview of the strength-controlling deformation mechanisms and related mechanics models in ultra-strength nanoscale materials. The critical role of the activation volume is highlighted in understanding the deformation mechanisms, as well as the size, temperature, and strain rate dependence of ultra strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Freund, L.B., Suresh, S., “Thin Film Materials: Stress, Defect Formation and Surface Evolution” (Cambridge University Press, Cambridge, UK, 2003).Google Scholar
2Ogata, S., Li, J., Yip, S., Science 298, 807 (2002).CrossRefGoogle Scholar
3Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., Yip, S., Phys. Rev. B 70, 104104 (2004).CrossRefGoogle Scholar
4Li, T., Morris, J.W., Nagasako, N., Kuramoto, S., Chrzan, D.C., Phys. Rev. Lett. 98, 105503 (2007).CrossRefGoogle Scholar
5Schuh, C.A., Hufnagel, T.C., Ramamurty, U., Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
6Li, J., MRS Bull. 32, 151 (2007).CrossRefGoogle Scholar
7Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
8Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R., Nature 389, 582 (1997).CrossRefGoogle Scholar
9Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S., Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle Scholar
10Peng, B., Mocascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D., Nat. Nanotechnol. 3, 626 (2008).CrossRefGoogle Scholar
11Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D., Tenne, R., Proc. Nat. Acad. Sci. U.S.A. 103, 523 (2006).CrossRefGoogle Scholar
12Wen, B., Sader, J.E., Boland, J.J., Phys. Rev. Lett. 101, 175502 (2008).CrossRefGoogle Scholar
13Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gosele, U., Ballif, C., Nano Lett. 6, 622 (2006).CrossRefGoogle Scholar
14Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X.M., Li, Y.D., Nano Lett. 6, 468 (2006).CrossRefGoogle Scholar
15Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
16Greer, J.R., Nix, W.D., Phys. Rev. B 73, 245410 (2006).CrossRefGoogle Scholar
17Volkert, C.A., Lilleodden, E.T., Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
18Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., Girshick, S.L., J. Mech. Phys. Solids 51, 979 (2003).CrossRefGoogle Scholar
19Shan, Z.W., Adesso, G., Cabot, A., Sherburne, M.P., Syed Asif, S.A., Warren, O.L., Chrzan, D.C., Minor, A.M., Alivisatos, A.P., Nat. Mater. 7, 947 (2008).CrossRefGoogle Scholar
20Lee, C., Wei, X.D., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
21Vineyard, G.H., J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
22Henkelman, G., Uberuaga, B.P., Jonsson, H., J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
23Gouldstone, A., Van Vliet, K.J., Suresh, S., Nature 411, 656 (2001).CrossRefGoogle Scholar
24Schall, P., Cohen, I., Weitz, D.A., Spaepen, F., Nature 440, 319 (2006).CrossRefGoogle Scholar
25Li, J., Van Vliet, K.J., Zhu, T., Yip, S., Suresh, S., Nature 418, 307 (2002).CrossRefGoogle Scholar
26Hill, R., Math. Proc. Cambridge Philos. Soc. 77, 225 (1975).CrossRefGoogle Scholar
27Park, H.S., Klein, P.A., Phys. Rev. B 75, 085408 (2007).CrossRefGoogle Scholar
28Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle Scholar
29Bei, H., Gao, Y.F., Shim, S., George, E.P., Pharr, G.M., Phys. Rev. B 77, 060103 (2008).CrossRefGoogle Scholar
30Volkert, C.A., Lilleodden, E.T., Kramer, D., Weissmuller, J., Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
31Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M., Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
32Kraft, O., Freund, L.B., Phillips, R., Arzt, E., MRS Bull. 27, 30 (2002).CrossRefGoogle Scholar
33Misra, A., Hirth, J.P., Hoagland, R.G., Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
34Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., Lu, K., Science 304, 422 (2004).CrossRefGoogle Scholar
35Hart, E. W., Acta Metall. 15, 351 (1967).CrossRefGoogle Scholar
36Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S., Acta Mater. 53, 2169 (2005).CrossRefGoogle Scholar
37Zhu, T., Li, J., Samanta, A., Kim, H.G., Suresh, S., Proc. Nat. Acad. Sci. U.S.A. 104, 3031 (2007).CrossRefGoogle Scholar
38Schiotz, J., Jacobsen, K.W., Science 301, 1357 (2003).CrossRefGoogle Scholar
39Argon, A.S., Yip, S., Philos. Mag. Lett. 86, 713 (2006).CrossRefGoogle Scholar
40Conrad, H., Nanotechnology 18, 325701 (2007).CrossRefGoogle Scholar
41Armstrong, R.W., Rodriguez, P., Philos. Mag. 86, 5787 (2006).CrossRefGoogle Scholar
42Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., Ma, E., Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
43Van Swygenhoven, H., Derlet, P.M., Froseth, A.G., Acta Mater. 54, 1975 (2006).CrossRefGoogle Scholar
44Zhang, K., Weertman, J.R., Eastman, J.A., Appl. Phys. Lett. 87, 061921 (2005).CrossRefGoogle Scholar
45Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., Hemker, K.J., Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
46Li, J.C.M., Phys. Rev. Lett. 96, 215506 (2006).CrossRefGoogle Scholar
47Cahn, J.W., Mishin, Y., Suzuki, A., Acta Mater. 54, 4953 (2006).CrossRefGoogle Scholar
48Chen, M.W., Ma, E., Hemker, K.J., Sheng, H.W., Wang, Y.M., Cheng, X.M., Science 300, 1275 (2003).CrossRefGoogle Scholar
49Van Swygenhoven, H., Derlet, P.M., Froseth, A.G., Nat. Mater. 3, 399 (2004).CrossRefGoogle Scholar
50Asaro, R.J., Suresh, S., Acta Mater. 53, 3369 (2005).CrossRefGoogle Scholar
51Han, X.D., Zheng, K., Zhang, Y.F., Zhang, X.N., Zhang, Z., Wang, Z.L., Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
52Dumitrica, T., Hua, M., Yakobson, B.I., Proc. Nat. Acad. Sci. U.S.A. 103, 6105 (2006).CrossRefGoogle Scholar
53Kang, K., Cai, W., Philos. Mag. 87, 2169 (2007).CrossRefGoogle Scholar
54Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S., Phys. Rev. B 65, 235430 (2002).CrossRefGoogle Scholar
55Warner, D.H., Curtin, W.A., Qu, S., Nat. Mater. 6, 876 (2007).CrossRefGoogle Scholar
56Frost, H.J., Ashby, M.F., “Deformation-Mechanism Maps” (Pergamon Press, New York, 1982).Google Scholar
57Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., Gleiter, H., Nat. Mater. 3, 43 (2004).CrossRefGoogle Scholar
58Yip, S., Nat. Mater. 3, 11 (2004).CrossRefGoogle Scholar
59McDowell, D.L., Mater. Sci. Eng., R 62, 67 (2008).CrossRefGoogle Scholar
60Suresh, S., Li, J., Nature 456, 716 (2008).CrossRefGoogle Scholar