Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:39:03.690Z Has data issue: false hasContentIssue false

Making Things by Self-Assembly

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Self-assembly—the spontaneous generation of order in systems of components—is ubiquitous in chemistry; in biology, it generates much of the functionality of the living cell. Self-assembly is relatively unused in microfabrication, although it offers opportunities to simplify processes, lower costs, develop new processes, use components too small to be manipulated robotically, integrate components made using incompatible technologies, and generate structures in three dimensions and on curved surfaces. The major limitations to the self-assembly of micrometer- to millimeter-sized components (mesoscale self-assembly) do not seem to be intrinsic, but rather operational: selfassembly can, in fact, be reliable and insensitive to small process variations, but fabricating the small, complex, functional components that future applications may require will necessitate the development of new methodologies. Proof-of-concept experiments in mesoscale self-assembly demonstrate that this technique poses fascinating scientific and technical challenges and offers the potential to provide access to hard-to-fabricate structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Proc. Natl. Acad. Sci. USA 99 (8) (2002), special feature, “Supramolecular Chemistry and Self-assembly.”CrossRefGoogle Scholar
2.Brammer, L., Chem. Soc. Rev. 33 (2004) p. 476.CrossRefGoogle Scholar
3.Svenson, S., Curr. Opin. Coll. Interface Sci. 9 (2004) p. 201.CrossRefGoogle Scholar
4.Rebek, J. Jr., Angew. Chem. Int. Ed. 44 (2005) p. 2068.CrossRefGoogle Scholar
5.Lehn, J.-M., Rep. Prog. Phys. 67 (2004) p. 249.CrossRefGoogle Scholar
6.Alivisatos, A.P., Barbara, P.F., Castelman, A.W., Chang, J., Dixon, D.A., Klein, M.L., McLendon, G.L., Miller, J.S., Ratner, M.A., Rossky, P.J., Stupp, S.I., and Thompson, M.E., Adv. Mater. 10 (1998) p. 1297.3.0.CO;2-7>CrossRefGoogle Scholar
7.Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Keser, M., and Amstutz, A., Science 276 (1997) p. 384.CrossRefGoogle Scholar
8.Hartgerink, J.D., Beniash, E., and Stupp, S.I., Science 294 (2001) p. 1684.CrossRefGoogle Scholar
9.Lehn, J.-M. and Ball, P., in The New Chemistry, edited by N., Hall (Cambridge University Press, Cambridge, UK, 2000) p. 300.Google Scholar
10.Hollingsworth, M.D., Science 295 (2002) p. 2410.CrossRefGoogle Scholar
11.Jones, M.N. and Chapman, D., Micelles, Monolayers and Biomembranes (Wiley-Liss, New York, 1995).Google Scholar
12.Park, J.-W. and Thomas, E.L., Polym. Prepr. 43 (2002) p. 360.Google Scholar
13.Thomas, E.L., Science 286 (1999) p. 1307.CrossRefGoogle Scholar
14.Whitesides, G.M., Ferguson, G.S., Allara, D., Scherson, D., Speaker, L., and Ulman, A., Crit. Rev. Surf. Chem. 3 (1993) p. 49.Google Scholar
15.Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev. 105 (2005) p. 1103.CrossRefGoogle Scholar
16.Whitesides, G.M. and Grzybowski, B., Science 295 (2002) p. 2418.CrossRefGoogle Scholar
17.Carroll, R.L. and Gorman, C.B., Angew. Chem. Int. Ed. 41 (2002) p. 4378.3.0.CO;2-A>CrossRefGoogle Scholar
18.Boncheva, M., Bruzewicz, D.A., and Whitesides, G.M., Pure Appl. Chem. 75 (2003) p. 621.CrossRefGoogle Scholar
19.Valignat, M.P., Theodoly, O., Crocker, J.C., Russel, W.B., and Chaikin, P.M., Proc. Natl. Acad. Sci. USA 102 (2005) p. 4225.CrossRefGoogle Scholar
20.Turner, D.R., Pastor, A., Alajarin, M., and Steed, J.W., Struct. Bond. 108 (2004) p. 97.CrossRefGoogle Scholar
21.Syms, R.R.A., Yeatman, E.M., Bright, V.M., and Whitesides, G.M., J. Microelectromech. Syst. 12 (2003) p. 387.CrossRefGoogle Scholar
22.Xia, Y., Gates, B., Yin, Y., and Lu, Y., Adv. Mater. 12 (2000) p. 693.3.0.CO;2-J>CrossRefGoogle Scholar
23.Srinivasan, U., Liepmann, D., and Howe, R.T., J. Microelectromech. Syst. 10 (2001) p. 17.CrossRefGoogle Scholar
24. Alien Technology Corp., “FSA Manufacturing,” www.alientechnology.com/technology/fsa_manufacturing.php (accessed September 2005).Google Scholar
25.Jiang, P., Bertone, J.F., and Colvin, V.L., Science 291 (2001) p. 453.CrossRefGoogle Scholar
26.Syms, R.R.A., J. Microelectromech. Syst. 8 (1999) p. 448.CrossRefGoogle Scholar
27.Jacobs, H.O., Tao, A.R., Schwartz, A., Gracias, D.H., and Whitesides, G.M., Science 296 (2002) p. 323.CrossRefGoogle Scholar
28.Boncheva, M., Andreev, S.A., Mahadevan, L., Winkelman, A., Reichman, D.R., Prentiss, M.G., Whitesides, S., and Whitesides, G.M., Proc. Natl. Acad. Sci. USA 102 (2005) p. 3924.CrossRefGoogle Scholar
29.Wu, H., Thalladi, V.R., Whitesides, S., and Whitesides, G.M., J. Am. Chem. Soc. 124 (2002) p. 14495.CrossRefGoogle Scholar
30.Yin, Y., Lu, Y., Gates, B., and Xia, Y., J. Am Chem. Soc. 123 (2001) p. 8718.CrossRefGoogle Scholar
31.Boncheva, M. and Whitesides, G.M., Adv. Mater. 17 (2004) p. 553.CrossRefGoogle Scholar
32.Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., and Weitz, D.A., Science 298 (2002) p. 1006.CrossRefGoogle Scholar
33.Huck, W.T.S., Tien, J., and Whitesides, G.M., J. Am. Chem. Soc. 120 (1998) p. 8267.CrossRefGoogle Scholar
34.Mao, C., Thalladi, V.R., Wolfe, D.B., Whitesides, S., and Whitesides, G.M., J. Am Chem. Soc. 124 (2002) p. 14508.CrossRefGoogle Scholar
35.Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994).Google Scholar
36.Boncheva, M. and Whitesides, G.M., in Encyclopedia of Nanoscience and Nanotechnology, edited by J.A., Schwarz, C., Contescu, and K., Putyera (Marcel Dekker, New York, 2004) p. 287.Google Scholar
37.Xia, Y., Gates, B., Yin, Y., and Sun, Y., in Handbook of Surface and Colloid Chemistry, 2nd ed., edited by K.S., Birdi (CRC Press, Boca Raton, FL, 2003) p. 555.Google Scholar
38.Boncheva, M., Ferrigno, R., Bruzewicz, D.A., and Whitesides, G.M., Angew. Chem. Int. Ed. 42 (2003) p. 3368.CrossRefGoogle Scholar
39.Boncheva, M., Gracias, D.H., Jacobs, H.O., and Whitesides, G.M., Proc. Natl. Acad. Sci. USA 99 (2002) p. 4937.CrossRefGoogle Scholar
40.Lendlein, A. and Langer, R., Science 296 (2002) p. 1673.CrossRefGoogle Scholar
41.Branden, C. and Tooze, J., Introduction to Protein Structure (Garland Publishing, New York, 1999).Google Scholar
42.Slovokhotov, Y.L., Neretin, I.S., and Howard, J.A.K., New J. Chem. 28 (2004) p. 967.CrossRefGoogle Scholar
43.Bockstaller, M.R., Mickiewicz, R.A., and Thomas, E.L., Adv. Mater. 17 (2005) p.1331.CrossRefGoogle Scholar
44.Wolfe, D.B., Snead, A., Mao, C., Bowden, N.B., and Whitesides, G.M., Langmuir 19 (2003) p. 2206.CrossRefGoogle Scholar
45.Madou, M., Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 1997).Google Scholar
46.Fearing, R.S., “Survey of sticking effects for micro parts handling,” presented at IEEE/RSJ Int. Workshop on Intelligent Robots and Systems (IROS), Pittsburgh, PA, 1995.CrossRefGoogle Scholar
47.Boehringer, K.F., Fearing, R.S., and Goldberg, K.Y., in The Handbook of Industrial Robotics, 2nd ed., edited by S., Nof (John Wiley and Sons, New York, 1999) p. 1045.CrossRefGoogle Scholar
48.Moreau, W.M., Semiconductor Lithography: Principles, Practices, and Materials (Plenum Press, New York, 1988).CrossRefGoogle Scholar
49.Xia, Y., Gates, B., and Li, Z.-Y., Adv. Mater. 13 (2001) p. 409.3.0.CO;2-C>CrossRefGoogle Scholar
50.Braun, P.V. and Wiltzius, P., Curr. Opin. Coll. Interface Sci. 7 (2002) p. 116.CrossRefGoogle Scholar
51.Norris, D.J., Arlinghaus, E.G., Meng, L.L., Heiny, R., and Scriven, L.E., Adv. Mater. 16 (2004) p. 1393.CrossRefGoogle Scholar
52.Kuo, W. and Kim, T., Proc. IEEE 87 (1999) p. 1329.CrossRefGoogle Scholar
53.Yeh, H.-J.J. and Smith, J.S., IEEE Photon Technol. Lett. 6 (1994) p. 706.CrossRefGoogle Scholar
54.Yang, G. and Nelson, B.J., in MEMS Packaging, edited by T.-R., Hsu (IEE Press, London, 2004) p. 109.CrossRefGoogle Scholar
55.Hatton, B., Landskron, K., Whitnall, W., Perovic, D., and Ozin, G.A., Acc. Chem. Res 38 (2005) p. 305.CrossRefGoogle Scholar
56.Murray, C.B., Kagan, C.R., and Bawendi, M.G., Ann. Rev. Mater. Sci. 30 (2000) p. 545.CrossRefGoogle Scholar
57.Butera, W.J., “Programming a Paintable Computer,” PhD thesis, Massachusetts Institute of Technology (2002).Google Scholar